
HowToBound
Release 1.0

CAS

Sep 27, 2023

CONTENTS

1 The Python API 3
1.1 Usage Scenarios . 3
1.2 Programming Policies . 3
1.3 The “Conveyor” device . 4
1.4 The “Worker” class . 8
1.5 Usage of “threading” module . 9

2 DAQ Policy 11

3 Device Scenes 13
3.1 From scene to Python . 13
3.2 Providing the scene from your device . 14
3.3 Providing several scenes from your device . 15
3.4 Providing Table Elements . 16
3.5 Linking To Other Devices Scenes . 16
3.6 Reference Implementations . 17

4 Indices and tables 19

i

ii

HowToBound, Release 1.0

Contents:

CONTENTS 1

HowToBound, Release 1.0

2 CONTENTS

CHAPTER

ONE

THE PYTHON API

1.1 Usage Scenarios

The Python bound API is to be used if direct hardware interaction is to be implemented in the Python programming
language. Additionally, it allows access to Karabo’s point-to-point communication interface by means of binding the
C++ code. Thus any processing algorithms implemented in Python which need to pass larger amounts of data in a
pipelined fashion should be implemented in this API.

1.1.1 Benefits

Depending on the application the Python bound API may provide for faster development cycles than the C++ API. In
any case, the Python bound API is feature-complete with respect to the C++, and frequently uses the same code basis
by binding the C++ code.

1.1.2 Limitations

As Python is a dynamically typed language, applications which require close matching to hardware types may be better
programmed in statically typed and compile-time checked C++.

Additionally, some libraries may only be available with C or C++ interfaces. In these cases, rather than binding the
library to Python it is recommended to use the C++ API.

Finally, Python, being an interpreted language, has performance short-comings with respect to compiled C++ code.
For most control aspects these should be negligible, and even for high-performance processing tasks can frequently
be mitigated by using e.g. mod:numpy or mod:scipy routines. European XFEL’s calibration suite is an example of
high-performance code implemented in Python.

1.2 Programming Policies

While device developers are encouraged to write pythonic Python, the API purposely breaks with some conventions to
more closely resemble the C++ API calls. This was done so that programmers switching between both languages will
not need to learn a separate set of method calls to access the same underlying functionality.

Especially when directly accessing hardware it is considered good practice to be somewhat verbose in coding, rather
than aim for the shortest possible implementation in Python. Accordingly, if e.g. a list comprehension significantly
obscures the functionality implemented, consider writing a loop instead.

For documentation, it is best practice to follow documentation guidelines set in PEP8, and document using reStructured
text syntax. Specifically, you will need to document each device’s state diagram, as otherwise it should not be publicly
released.

3

HowToBound, Release 1.0

1.3 The “Conveyor” device

Consider the code of our device - ConveyorPy.py:

#!/usr/bin/env python

__author__="name.surname@xfel.eu"
__date__ ="November, 2014, 05:26 PM"
__copyright__="Copyright (c) 2010-2014 European XFEL GmbH Hamburg. All rights reserved."

import time

from karabo.bound import (
BOOL_ELEMENT, DOUBLE_ELEMENT, KARABO_CLASSINFO, OVERWRITE_ELEMENT, SLOT_ELEMENT,
PythonDevice, State, Unit

)

@KARABO_CLASSINFO("ConveyorPy", "1.3")
class ConveyorPy(PythonDevice):

@staticmethod
def expectedParameters(expected):

"""Description of device parameters statically known"""
OVERWRITE_ELEMENT(expected).key("state")

.setNewOptions(State.INIT, State.ERROR, State.STARTED, State.STOPPING,␣
→˓State.STOPPED, State.STARTING)

.setNewDefaultValue(State.INIT)

.commit(),

Button definitions
SLOT_ELEMENT(expected).key("start")

.displayedName("Start")

.description("Instructs device to go to started state")

.allowedStates(State.STOPPED)

.commit(),

SLOT_ELEMENT(expected).key("stop")
.displayedName("Stop")
.description("Instructs device to go to stopped state")
.allowedStates(State.STARTED)
.commit(),

SLOT_ELEMENT(expected).key("reset")
.displayedName("Reset")
.description("Resets in case of an error")
.allowedStates(State.ERROR)
.commit(),

Other elements
(continues on next page)

4 Chapter 1. The Python API

HowToBound, Release 1.0

(continued from previous page)

DOUBLE_ELEMENT(expected).key("targetSpeed")
.displayedName("Target Conveyor Speed")
.description("Configures the speed of the conveyor belt")
.unit(Unit.METER_PER_SECOND)
.assignmentOptional().defaultValue(0.8)
.reconfigurable()
.commit(),

DOUBLE_ELEMENT(expected).key("currentSpeed")
.displayedName("Current Conveyor Speed")
.description("Shows the current speed of the conveyor")
.readOnly()
.commit(),

BOOL_ELEMENT(expected).key("reverseDirection")
.displayedName("Reverse Direction")
.description("Reverses the direction of the conveyor band")
.assignmentOptional().defaultValue(False)
.allowedStates(State.STOPPED)
.reconfigurable()
.commit(),

BOOL_ELEMENT(expected).key("injectError")
.displayedName("Inject Error")
.description("Does not correctly stop the conveyor, such "

"that a Error is triggered during next start")
.assignmentOptional().defaultValue(False)
.reconfigurable()
.expertAccess()
.commit(),

)

def __init__(self, configuration):
Always call PythonDevice constructor first!
super(ConveyorPy, self).__init__(configuration)

Register function that will be called first
self.registerInitialFunction(self.initialize)

Register slots
self.registerSlot(self.start)
self.registerSlot(self.stop)
self.registerSlot(self.reset)

def preReconfigure(self, config):
""" The preReconfigure hook allows to forward the configuration to some␣

→˓connected h/w"""

try:
if config.has("targetSpeed"):

Simulate setting to h/w

(continues on next page)

1.3. The “Conveyor” device 5

HowToBound, Release 1.0

(continued from previous page)

self.log.INFO("Setting to hardware: targetSpeed -> " + str(config.get(
→˓"targetSpeed")))

if config.has("reverseDirection"):
Simulate setting to h/w
self.log.INFO("Setting to hardware: reverseDirection -> " + str(config.

→˓get("reverseDirection")))

except RuntimeError as e:
You may want to indicate that the h/w failed
self.log.ERROR("'preReconfigure' method failed : {}".format(e))
self.updateState(State.ERROR)

def initialize(self):
""" Initial function called after constructor but with equipped SignalSlotable␣

→˓under runEventLoop"""
try:

As the Initializing state is not mentioned in the allowed states
nothing else is possible during this state
self.updateState(State.INIT)

self.log.INFO("Connecting to conveyer hardware...")

Simulate some time it could need to connect and setup
time.sleep(2.)

Automatically go to the Stopped state
self.stop()

except RuntimeError as e:
self.log.ERROR("'initialState' method failed : {}".format(e))
self.updateState(State.ERROR)

def start(self):
try:

self.updateState(State.STARTING) # set this if long-lasting work follows

Retrieve current values from our own device-state
tgtSpeed = self.get("targetSpeed")
currentSpeed = self.get("currentSpeed")

If we do not stand still here that is an error
if currentSpeed > 0.0:

raise ValueError("Conveyer does not stand still at start-up")

Separate ramping into 50 steps
increase = tgtSpeed / 50.0

Simulate a slow ramping up of the conveyor
for i in range(50):

currentSpeed += increase
self.set("currentSpeed", currentSpeed);
time.sleep(0.05)

(continues on next page)

6 Chapter 1. The Python API

HowToBound, Release 1.0

(continued from previous page)

Be sure to finally run with targetSpeed
self.set("currentSpeed", tgtSpeed)

self.updateState(State.STARTED) # reached the state "Started"

except RuntimeError as e:
self.log.ERROR("'start' method failed : {}".format(e))
self.updateState(State.ERROR)

def stop(self):
try:

Retrieve current value from our own device-state
currentSpeed = self.get("currentSpeed")
if currentSpeed != 0:

self.updateState(State.STOPPING) # set this if long-lasting work follows
Separate ramping into 50 steps
decrease = currentSpeed / 50.0

Simulate a slow ramping down of the conveyor
for i in range(50):

currentSpeed -= decrease
self.set("currentSpeed", currentSpeed)
time.sleep(0.05)

Be sure to finally stand still
if self.get("injectError"):

self.set("currentSpeed", 0.1)
else:

self.set("currentSpeed", 0.0)

self.updateState(State.STOPPED) # reached the state "Stopped"
except RuntimeError as e:

self.log.ERROR("'stop' method failed : {}".format(e))
self.updateState(State.ERROR)

def reset(self):
self.set("injectError", False)
self.set("currentSpeed", 0.0)
self.initialize()

Consider the main steps of the code above, which are important to mention while writing devices in Python:

1. Import needed pieces from the karabo.bound package:

from karabo.bound import (
KARABO_CLASSINFO, PythonDevice, launchPythonDevice,
BOOL_ELEMENT, DOUBLE_ELEMENT, OVERWRITE_ELEMENT, SLOT_ELEMENT, Unit, State

)

2. Decide whether you want to use an FSM. In our example we don’t use it, therefore we have:

from karabo.bound import Worker

The current recommendation is to use NoFsm.

1.3. The “Conveyor” device 7

HowToBound, Release 1.0

3. Place the decorator KARABO_CLASSINFO just before class definition. It has two parameters: “classId” and
“version” similar to the corresponding C++ macro. In class definition we specify that our class inherits from
PythonDevice as well as from NoFsm (see step 2):

@KARABO_CLASSINFO("ConveyorPy", "2.3")
class ConveyorPy(PythonDevice):

4. Constructor:

def __init__(self, configuration):
always call superclass constructor first!
super(ConveyorPy,self).__init__(configuration)
Register function that will be called first
self.registerInitialFunction(self.initialState)
Register slots
self.registerSlot(self.start)
self.registerSlot(self.stop)
self.registerSlot(self.reset)
self.worker = None
self.timeout = 1000 # milliseconds
self.repetition = -1 # forever

In the constructor you always have to call the super class’s constructor first.

Then you need to register the function that will be called when the device is instantiated.

Finally you have to register all the slots: in the example start, stop and reset.

5. Define the static method expectedParameters, where you should describe what properties are available on
this device.

6. Define the implementation of initial function (in the example initialState) and of the slots. They will have
to call self.updateState(newState) at the very end, in order to update device’s state.

These functions must be non-blocking: if they need to run some process which takes a long time, they should
start it in a separate thread, or even better by using the Worker class. See the complete example code for the
Worker’s usage.

1.4 The “Worker” class

The Worker class is suitable for executing periodic tasks. It is defined in the karabo.bound module, from which it
must be imported,

from karabo.bound import Worker

It can be instantiated and started like this:

self.counter = 0
self.timeout = 1000 # milliseconds
self.repetition = -1 # forever
self.worker = Worker(self.hook, self.timeout, self.repetition).start()

The ‘repetition’ parameter will specify how many times the task has to be executed (-1 means ‘forever’), the ‘timeout’
parameter will set the interval between two calls and self.hook is the callback function defined by the user, for
example:

8 Chapter 1. The Python API

HowToBound, Release 1.0

def hook(self):
self.counter += 1
self.log.INFO("*** periodicAction : counter = " + str(self.counter))

The worker can then be stopped by overriding preDestruction method, like this:

def preDestruction(self):
if self.worker is not None:

if self.worker.is_running():
self.worker.stop()

self.worker.join()
self.worker = None

This method will be automatically called during device shutdown process.

1.5 Usage of “threading” module

Sometimes if you would decide to use multithreading directly for executing periodic tasks in python karabo device like
Klass you may follow these steps.

First import threading module.

import threading

Add some flag into python constructor (__init__) with the class scope. . .

self.running = False

Then define class function that will do periodic work as a thread

def polling(self):
self.running = True
while self.running:

do some useful work like
polling the hardware ...
...
time.sleep(1) # define some idle interval (1 sec)

Then define method that starts polling thread . . .

def start_polling(self):
use state here that fits your needs
self.updateState(State.MONITORING)
if self.pollingThread is None:

self.pollingThread threading.Thread(target=self.polling)
self.log.INFO("Start polling thread")
self.pollingThread.start()

The start_polling may be placed into initialize function, into slot of start button or another function that
should activate the periodic task.

If this device is killed the slotKillDevice is called, which calls preDestruction method. So it is important to
override this method to stop running our polling loop above

1.5. Usage of “threading” module 9

HowToBound, Release 1.0

def preDestruction(self):
self.running = False # stop the loop

Please follow this pattern to allow karabo-stop of python server working properly. Otherwise the device and server
may hang up!

10 Chapter 1. The Python API

CHAPTER

TWO

DAQ POLICY

Not every parameter of a device is interesting to record, such as the provided scenes. As such, the policy for each
individual property can be set, on a per-instance basis.

These are specified using the DAQPolicy enum:

• OMIT : will not record the property to file;

• SAVE: will record the property to file;

• UNSPECIFIED: will adopt the global default DAQ policy. Currently, it is set to record, although this will
eventually change to not recorded.

Legacy devices which do not specify a policy will have an UNSPECIFIED policy set to all their properties.

Note: This are applied to leaf properties. Nodes do not have DAQPolicy.

Developers should liaise with users to define which properties should be recorded. These can be set up programmati-
cally:

from karabo.bound import DAQPolicy, MetricPrefix, UINT32_ELEMENT

@staticmethod
def expectedParameters(expected):

(
UINT32_ELEMENT(expected).key('enzymAssay')

.displayedName("Assay")

.descriptio("Enzym Activity")

.unit(Unit.KATAL)

.metricPrefix(MetricPrefix.MICRO)

.daqPolicy(DAQPolicy.SAVE)

.readOnly().initialValue(0)

.commit(),
)

The policy can be overwritten from the GUI, before instantiation, and saved in a project:

11

HowToBound, Release 1.0

Injected properties, however, can only define their policy at the time of injection.

12 Chapter 2. DAQ Policy

CHAPTER

THREE

DEVICE SCENES

Karabo provides a protocol for devices to share predefined scenes. These allows the author of a device to provide what
they think are a good starting point. Moreover, these are easily accessible by from the topology panel in the GUI:

A default scene can also be accessed by double-clicking on a device.

This section shows how to enable your device to have builtin scenes.

Implementing this functionality requires the creation of a scene, in the scene editor, conversion to Python, and adding
the requestScene framework slot.

3.1 From scene to Python

Begin by drawing an adequate scene in the GUI’s scene editor, and save it locally on your computer as SVG (right-click
on scene -> Save to File).

Use the karabo-scene2py utility to convert the SVG file to Python code:

$ karabo-scene2py scene.svg SA1_XTD2_UND/MDL/GAINCURVE_SCAN > scenes.py

The first argument is the scene file, the second is an optional deviceId to be substituted.

As it is generated code, make sure the file is PEP8 compliant. The final result should look more or less like the following:

13

HowToBound, Release 1.0

from karabo.common.scenemodel.api import (
IntLineEditModel, LabelModel, SceneModel, write_scene

)

def get_scene(deviceId):
input = IntLineEditModel(height=31.0,

keys=['{}.config.movingAverageCount'.format(deviceId)],
parent_component='EditableApplyLaterComponent',
width=67.0, x=227.0, y=18.0)

label = LabelModel(font='Ubuntu,11,-1,5,50,0,0,0,0,0', foreground='#000000',
height=27.0, parent_component='DisplayComponent',
text='Running Average Shot Count',
width=206.0, x=16.0, y=15.0)

scene = SceneModel(height=1017.0, width=1867.0, children=[input, label])

return write_scene(scene)

Add this file to your device source project.

3.2 Providing the scene from your device

Add a read-only VectorString property called availableScenes to your expected parameters, and implement the re-
questScene framework slot. This is a predefined slot, which allows various actors to understand the scene protocol.

The slot takes a Hash params and returns a Hash with the origin, its datatype (deviceScene), and the scene itself:

from karabo.bound import DAQPolicy, VECTOR_STRING_ELEMENT
from karabo.common.api import KARABO_SCHEMA_DISPLAY_TYPE_SCENES as DT_SCENES

@staticmethod
def expectedParameters(expected):

(
VECTOR_STRING_ELEMENT(expected).key('availableScenes')

.setSpecialDisplayType(DT_SCENES)

.daqPolicy(DAQPolicy.OMIT)

.readOnly().initialValue(['overview'])

.commit()
)

def requestScene(self, params):
name = params.get('name', default='overview')
payload = Hash('success', True, 'name', name,

'data', get_scene(self.getInstanceId()))

self.reply(Hash('type', 'deviceScene',
'origin', self.getInstanceId(),
'payload', payload))

self.KARABO_SLOT(self.requestScene)

14 Chapter 3. Device Scenes

HowToBound, Release 1.0

3.3 Providing several scenes from your device

Would you want to provide several scenes (e.g., overview and control scene), you can define several functions in
scenes.py, and modify requestScene to check params[‘name’]:

from karabo.bound import DAQPolicy, VECTOR_STRING_ELEMENT
from karabo.common.api import KARABO_SCHEMA_DISPLAY_TYPE_SCENES as DT_SCENES

import .scenes

@staticmethod
def expectedParameters(expected):

(
VECTOR_STRING_ELEMENT(expected).key('availableScenes')

.setSepcialDisplayType(DT_SCENES)

.daqPolicy(DAQPolicy.OMIT)

.readOnly().initialValue(['overview', 'controls'])

.commit()
)

def requestScene(self, params):
payload = Hash('success', False)
name = params.get('name', default='overview')

if name == 'overview':
payload.set('success', True)
payload.set('name', name)
payload.set('data', scenes.overview(self.getInstanceId()))

elif name == 'controls':
payload.set('success', True)
payload.set('name', name)
payload.set('data', scenes.controls(self.getInstanceId()))

self.reply(Hash('type', 'deviceScene',
'origin', self.getInstanceId(),
'payload', payload))

self.KARABO_SLOT(self.requestScene)

Note: There is the convention that the default scene (of your choice) should be first in the availableScenes list.

3.3. Providing several scenes from your device 15

HowToBound, Release 1.0

3.4 Providing Table Elements

As described in table-element, table elements are vectors of hash, the schema is specified as Hash serialized to XML,
(which karabo-scene2py takes care of).

In this case, it’s fine to break the PEP8 80 characters limit. A table element looks like:

table = TableElementModel(
column_schema='TriggerRow:<root KRB_Artificial="">CONTENT</root>',
height=196.0, keys=['{}.triggerEnv'.format(deviceId)],
klass='DisplayTableElement',
parent_component='DisplayComponent',
width=436.0, x=19.0, y=484.0

)

3.5 Linking To Other Devices Scenes

The following applies whether you want to link to another of your scenes or to another device’s scene.

Let’s say that you want to add links in your overview scene to your controls scene.

The DeviceSceneLinkModel allows you to specify links to other dynamically provided scenes.

In your scenes.py, import DeviceSceneLinkModel and SceneTargetWindow from karabo.common.scenemodel.api and
extend overview(deviceId)():

from karabo.common.scenemodel.api import DeviceSceneLinkModel, SceneTargetWindow

def overview(deviceId):
remaining scene stays the same

link_to_controls = DeviceSceneLinkModel(
height=40.0, width=314.0, x=114.0, y=227.0,
parent_component='DisplayComponent',
keys=['{}.availableScenes'.format(deviceId)], target='controls',
text='Controls scene',
target_window=SceneTargetWindow.Dialog)

children = [label, input, link_to_controls]
scene = SceneModel(height=1017.0, width=1867.0, children=children)

return write_scene(scene)

If you want to link to another device, make overview() accept another remoteDeviceId parameter, and point the link
to that device:

def overview(deviceId, remoteDeviceId):
remaining scene stays the same

link_to_remote = DeviceSceneLinkModel(
height=40.0, width=314.0, x=114.0, y=267.0,
parent_component='DisplayComponent',
text='Link to other device',

(continues on next page)

16 Chapter 3. Device Scenes

HowToBound, Release 1.0

(continued from previous page)

keys=['{}.availableScenes'.format(remoteDeviceId)], target='scene',
target_window=SceneTargetWindow.Dialog

)

children = [label, input, link_to_controls, link_to_remote]
scene = SceneModel(height=1017.0, width=1867.0, children=children)

return write_scene(scene)

3.6 Reference Implementations

LimaCameras: provides a default scene with an image view in its LimaDeviceKEP21: definition of the scene protocol

3.6. Reference Implementations 17

https://git.xfel.eu/karaboDevices/limaCameras
https://git.xfel.eu/Karabo/enhancement-proposals/blob/kep21/keps/kep-0021.rst

HowToBound, Release 1.0

18 Chapter 3. Device Scenes

CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

19

	The Python API
	Usage Scenarios
	Benefits
	Limitations

	Programming Policies
	The “Conveyor” device
	The “Worker” class
	Usage of “threading” module

	DAQ Policy
	Device Scenes
	From scene to Python
	Providing the scene from your device
	Providing several scenes from your device
	Providing Table Elements
	Linking To Other Devices Scenes
	Reference Implementations

	Indices and tables

