
HowToGUI
Release 1.0

Controls

Aug 16, 2023

CONTENTS

1 The Karabo GUI 3
1.1 Getting Started . 3
1.2 The Cinema . 5
1.3 The Processing Lamp . 5

2 The Navigation Panel 7
2.1 System Topology . 7
2.2 Search Bar . 23

3 The Project Panel 29
3.1 Projects . 29
3.2 Macros . 33
3.3 Devices . 38
3.4 Device Configuration . 43
3.5 Scenes . 45
3.6 Subprojects . 48

4 The Configuration Panel 49
4.1 The Configuration Editor Toolbar . 50
4.2 Device Configuration Example . 50

5 The Service Panels 55
5.1 The Alarm Panel . 55
5.2 The Logging Panel . 56
5.3 The Macro Panel . 57

6 The Scene Panel 63
6.1 Scene Toolbar . 65

7 Widgets - Controllers and Conversion 69
7.1 Basic Widgets . 70
7.2 Functional Widgets . 77
7.3 Icon Widgets . 81
7.4 Plot Framework . 82

8 Indices and tables 89

i

ii

HowToGUI, Release 1.0

Contents:

CONTENTS 1

HowToGUI, Release 1.0

2 CONTENTS

CHAPTER

ONE

THE KARABO GUI

1.1 Getting Started

The GUI starts up into a non-connected state, meaning that you need to login to a specific GUI server with your login
credentials. By doing so your access level is also determined and the appropriate options will be available to you.

karabo-gui

will open up this panel:

Fig. 1: The karabo GUI application directly after startup

You can see that most of the panels are still empty, as you are in a non-connected state. From left to right the following
panels are available:

• The navigation panel, which gives you a live view of the full system topology and allows for filtering (Left
Area)

• The project panel, giving you a logical view on the projects you have loaded (Left Area)

3

HowToGUI, Release 1.0

• The scene panel, which is used to display custom views (Middle Area)

• The service panels, giving access to logging, alarm service and an ikarabo console (Middle Area)

• The configurator panel, which lists all properties and slots available for a device as appropriate for your access
level (Right Area)

The connect dialog automatically shows up after starting the GUI application. Alternatively, for connecting to a GUI
server, the connect to server button can be clicked in the top left of the application. The connect dialog requires
the operator credentials and the gui server information (host and port) for connecting. The GUI server selection field
remembers the 5 last recently used gui servers configurations.

Fig. 2: The GUI connection dialog.

After connecting to a GUI server, the GUI application will receive the Broker and Topology information showing a live
view of the system.

Any of the listed panels may be detached and arranged separately on the screen. In the following each panel is introduced
in more detail.

1.1.1 How to connect to the GUI Server

In order to use the Karabo GUI with the control network, we have to open an ssh tunnel towards the desired Karabo
GUI server. This can be done as follows:

ssh desyusername@exflgateway -L LOCAL_FORWARDING_PORT:GUI_SERVER_ALIAS:GUI_SERVER_PORT

Hence, a tunnel forwarding from the GUI server of the XTD2/XTD9 installation looks like:

ssh desyusername@exflgateway -L 44444:sa1-br-sys-con-gui1:44444

Afterwards, launch the Karabo GUI on your local machine and connect to the GUI Server with the settings localhost
and port 44444.

Sometimes it is even beneficial if you make the forwarding port differ from 44444 (e.g. 44445) if you have a local
running GUI server already running on port 44444.

4 Chapter 1. The Karabo GUI

HowToGUI, Release 1.0

ssh desyusername@exflgateway -L 44445:sa1-br-sys-con-gui1:44444

In case the connection is refused, contact the responsible control network responsibles once you filled the control
network access form.

If you want to connect a GUI from outside the DESY network, you have to tunnel twice, once through bastion.desy.de
to get into the DESY network and then through exflgateway, e.g.

ssh -L38080:localhost:38081 desyusername@bastion.desy.de -t ssh -L38081:sa1-br-sys-con-
→˓gui1:44444 exflgateway

where 38080 is the local forwarding port and 38081 an intermediate port.

1.2 The Cinema

The Karabo GUI is capable to run in a cinema fashion, by just providing a project database domain and the corre-
sponding uuid of the scene:

karabo-cinema DOMAIN UUID

Since uuids are not convenient to handle, a key-stroke ctrl + c is available from the project panel project_intro to
copy the uuid to the selection clipboard. The selection clipboard can be pasted with the middle mouse button.

The cinema can connect directly by providing host and port. Furthermore, multiple scenes can be launched and a
username can be provided.

karabo-cinema DOMAIN UUID -host HOSTNAME -port PORTNUMBER -username USERNAME

karabo-cinema LOCAL 7f9023e8-bae3-4352-beb9-b0c162097b60 1d057710-2cc3-4410-a587-
→˓61ecb3c156c2 -host localhost -port 44444 -username expert

1.3 The Processing Lamp

A processing lamp is visible in the menu bar on the right side of the GUI on top of the configurator. It is used to
visualize the difference between the arrival time of packet and its actual processing within the GUI client.

Fig. 3: The processing lamp

Color status description
Fine The Karabo GUI is up to date
Warning The updates are at least behind by 2s
Alarm The updates are at least behind by 5s

1.2. The Cinema 5

HowToGUI, Release 1.0

The delay in processing only happens in very rare cases, e.g. Project loading. Without activity in the GUI, the process-
ing lamp will not be able to change its color.

Note: The operator is still able to send out changes when the processing delay is large, e.g. stop the movement of
motors!

6 Chapter 1. The Karabo GUI

CHAPTER

TWO

THE NAVIGATION PANEL

The navigation panels gives you a live view of the system, in a tree hierarchy. This is in contrast to the project panel,
which presents a logical view of the system, as grouped by components.

In its default view, the navigation panel shows the system topology in tree hierarchy showing the unified and alarm
states of the running devices. This is automatically shown upon successfully connecting to the GUI server of the
desired topic.

This is comprised of the following components, and will be further discussed on the following chapters:

1. Panel Bar

2. Search Bar

3. System Topology

2.1 System Topology

The system topology consists of Karabo components, namely: control servers, device servers, device classes and device
instances.

• Control servers are the physical machine running the device servers.

• Device servers are the hosts of devices.

• Device classes are the templates of devices.

• Device instances are running devices on the device server.

These components are show in a tree structure:

control_server
device_server

device_class
device_instance

and can be seen in the Navigation Panel as follows:

7

HowToGUI, Release 1.0

Fig. 1: The Karabo navigation panel. Icons next to the device instance id give you the color code status of the device,
as well as the alarm condition of the device if an alarm is active.

8 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

Fig. 2: A navigation panel is composed of the panel bar, the search bar, and the corresponding topology tree (System
Topology).

2.1. System Topology 9

HowToGUI, Release 1.0

2.1.1 Control Server

The control server is a machine or computer that hosts Karabo components, namely device servers, devices, clusters of
brokers, and database servers. This usually has a name exfl_____. A system could have one or more control servers.

2.1.2 Device Server

Device servers are the hosts for Karabo devices. They are responsible for loading the device code and running the device
in an event loop, i.e. keeping it live and available to the distributed system. Device servers come in three flavors: C++,
Python and middle-layer device servers.

Context menu

Right-clicking will show a context menu, which are as follows:

1. Shutdown server

This will restart the server, which takes a few seconds. When this option is selected, the server will be removed
in the system topology but will then restart and reappear after the last server of the same control server.

2. About

This will show a dialog that contains keys which describes the device server.

10 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

Fig. 3: The server context menu.

2.1. System Topology 11

HowToGUI, Release 1.0

About

The contents of About varies for different servers classes, which can be seen as follows:

Fig. 4: The About dialog of the different device server classes.

Below is a more detailed information about each keys.

12 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

key type description
type string Karabo component type:

host: control server
server: device server
class: device class
device: device instance

serverID string The ID of the device server.
version string The version of the device server.
host string The ID of the control server where

the server is located.
visibility integer User access level who can see the

server:

0: observer (default)
1: user
2: operator
3: expert
4: admin
5: god

heartbeatInterval integer Interval in seconds at which the
server sends heartbeats to dis-
tributed systems

karaboVersion string Current version of the Karabo
Framework.

p2p_connection string Complete address of the host (tcp:/
/host:port) for p2p connection

deviceClasses vector string List of devices classes that can be in-
stantiated in the server.

visibilities vector integer List of visibility of the device
classes.

2.1.3 Device Class

Device classes that can be run on the device server are shown at its children in the System Topology. They appear
in the topology when a device of the respective class is online.

The list of available classes can be viewed via the server’s About.

2.1. System Topology 13

HowToGUI, Release 1.0

Fig. 5: The device classes are also listed in the server’s About dialog.

14 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

Configuration

Clicking the device class will show the default device Schema in the Configuration Panel.

Fig. 6: The default device class configuration will be shown when clicking the device class in the Project Panel.

Context menu

Right-clicking will show a context menu, which are as follows:

1. Open configuration (*.xml)

This will load a device class configuration file.

2. Save configuration as (*.xml)

This will save the current device class configuration as an .xml.

See also:
Configuration Panel.

3. Open device scene

This option will only appear when a device class has been instantiated for the session and if it has a default
scene. If selected, the default scene for the device will be shown on the Scene Panel. The retrieved scene from a
navigation panel will not be attached to the project.

2.1. System Topology 15

HowToGUI, Release 1.0

Fig. 7: The device class context menu.

16 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

2.1. System Topology 17

HowToGUI, Release 1.0

See also:
Scene Panel.

2.1.4 Device Instance

When a device is successfully instantiated, it goes online and runs on the specified device server. A device instance is
shown under the device class of the device server that hosts it. Its status can easily be perceived in the Navigation Panel
with the help of some visual indications.

Instance status

The device instance icons change depending on its status.

icon status description
Instantiated The device is instantiated and is healthy.
Instance Er-
ror

The device is instantiated but has encountered error(s)

Monitored The device is instantiated and its configuration is being monitored via the scene or configu-
ration panel.

Alarm levels

The alarm level of device instances can be seen in the first column of the system topology. This appears when one of
its properties trigger an alarm. Below are the alarm indications and their meanings.

icon status description
None The device is working normally.
Warning A device property is in a value range where it should be monitored.
Critical A device property is in its critical value range.
Interlock A device property has triggered an interlock.

See also:
The Karabo SCADA Framework: Alarm System

18 Chapter 2. The Navigation Panel

https://in.xfel.eu/readthedocs/docs/karabo/en/latest/concepts/alarm_system.html#alarm-system

HowToGUI, Release 1.0

Device status

The device status can also be perceived from the status icons that appear on the second column of the system topology.

icon status description
error Hardware and/or pipeline-processing error(s) has been encountered.
ok The device did not encounter any errors

Configuration

Clicking the device instance will show the current device instance configuration in the Configuration Panel.

Fig. 8: The instance of the new device configuration.

This will also change its icon to , denoting that it is the current device configuration shown in the Configuration Panel.

2.1. System Topology 19

HowToGUI, Release 1.0

Context menu

Right-clicking will show a context menu, which are as follows:

Fig. 9: The context menu of the device instance.

1. Open configuration (*.xml)

• This will load a device class configuration file.

2. Save configuration as (*.xml)

• This will save the current device class configuration as an .xml.

3. Shutdown device

• This will shutdown the device instance and remove it from the system.

4. Open device scene

This option will only appear for devices with available scenes. If selected, a dialog where the scene to be displayed
can be selected.

5. About

This will show a dialog that contains keys which describes the device instance.

20 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

Opening Default Device Scene

Aside from displaying scenes from the context menu option, the default device scene can also be opened by double-
clicking the device instance.

About

The contents of About varies for different instance classes, which can be seen as follows:

Fig. 10: The About dialog of the different device instance classes.

Below is a more detailed information about each keys.

2.1. System Topology 21

HowToGUI, Release 1.0

key type description
heartbeatInterval integer Interval in seconds at which the

server sends heartbeats to dis-
tributed systems

archive bool Whether the device is archived in the
DataLogger

status string Description of the device status.
serverId string The ID of device server which the

device is running on:

cppServer

pythonServer

mdlServer

type text Karabo component type:

host: control server
server: device server
class: device class
device: device instance

capabilities integer What the device can do, a sum of:

1: provides scenes
2: provides macros
4: provides interfaces

classId string The ID of the device class of the in-
stance.

p2p_connection string Complete address of the host (tcp:/
/host:port)

compatibility string Earliest version of Karabo Frame-
work the device is compatible with.

visibility integer User access level who can see the de-
vice:

0: observer (default)
1: user
2: operator
3: expert
4: admin
5: god

host string The ID of the control server where
the device is running on.

karaboVersion string Current version of the Karabo
Framework

22 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

2.1.5 Expanding/collapsing the tree

The system topology is expanded by default. This means all items are being shown in the Navigation Panel, resulting
to a lengthy topology. A component can be collapsed, with its members being hidden from the list. The arrow icon
beside the component can be clicked in order to do so.

Fig. 11: A Karabo component with members (such as cppServer/doocs_1) can be expanded (left) and collapsed
(right) by clicking on the arrow icon beside it.

The header of the system topology can also be double-clicked to expand/collapse all the components.

2.2 Search Bar

The Search Bar enables users to find the Karabo component of their interest in the system topology. This is helpful
especially with complicated topologies such as instrument topics.

This is composed of a text field, navigation buttons, and case-sensitivity and regular expression toggle buttons.

2.2. Search Bar 23

HowToGUI, Release 1.0

Fig. 12: Double-clicking the header (left) will collapse the tree, leaving a list of control servers (right). Double-clicking
it again will expand all the components.

24 Chapter 2. The Navigation Panel

HowToGUI, Release 1.0

2.2.1 Searching Karabo components

In order to search for a Karabo component, the user can enter its ID in the search field. The search is being done
incrementally, meaning that it is being done as-you-type. The number of results are reflected on the text on the right.
The first result from the top will also be highlighted.

Fig. 13: Searching for ex in the system topology returns 1 result. It hits the control server exflqr30518.

2.2.2 Navigating through the results

The search results can be viewed via the navigation buttons. These buttons can be used to go to the previous or next
result. When pressed, the consequent entry will be focused, therefore being highlighted and its configuration being
shown in the Configuration Panel.

The navigation is done in an orderly manner, which means that the results are viewed from the top to the bottom of the
topology.

Fig. 14: Searching for karabo will hit the first component ID from the top that contains it, which is the de-
vice server karabo/alarmServer (left). Clicking on the next navigation button will then hit the device instance
Karabo_AlarmService, which is the second entry from the top (right).

When the search returns no results, these buttons are disabled.

2.2. Search Bar 25

HowToGUI, Release 1.0

Fig. 15: Navigation buttons are disabled when no results are found.

2.2.3 Case-sensitive search

The search filter is case-insensitive by default. Toggling the case-sensitive button will match the case of the input text.

Fig. 16: The alarm search with case-sensitivity enabled hits the karabo/alarmServer but not AlarmService and
Karabo_AlarmService.

2.2.4 Regular expressions

Regular expressions (regex) can also be utilized when searching. This is by toggling the regex button and entering a
valid regex string.

Note: Karabo GUI uses Python’s re module in managing the regex. Follow the link below for more information.

Python: Regular Expression HOWTO

26 Chapter 2. The Navigation Panel

https://docs.python.org/3.6/howto/regex.html#regex-howto

HowToGUI, Release 1.0

Fig. 17: Searching for component IDs that start with letters and end with digits can be done by the regex
^([a-zA-Z]+)\d+$. It successfully hits the control server exflqr30518.

2.2. Search Bar 27

HowToGUI, Release 1.0

28 Chapter 2. The Navigation Panel

CHAPTER

THREE

THE PROJECT PANEL

The project panel is the rightmost tab of the Navigation Panel, in the Karabo GUI. It is the main access point for
interacting with karabo projects and devices in a hierarchical fashion.

By default, no project is loaded in the project panel.

3.1 Projects

A karabo project bundles device servers, device configurations, GUI scenes, macros, and subprojects. It has different
categories, which will be explained in the following sections:

1. Macros

2. Scenes

3. Device Servers

a. Devices

b. Configurations

4. Subprojects

A project can be (a) created, (b) loaded, (c) saved, and (d) trashed.

3.1.1 Creating Projects

A project can be created by clicking the create new (sub)project button. A dialog of two fields will appear, which
prompts the user to select the domain where the project will be saved in to, and to supply the project title. It is enforced
that the title contains alphanumeric, dashes, and underscores only. Though it is best practice to come up with a unique
project title, it is allowed to have projects with the same title since each project has a unique identifier (UUID).

Note: Aside from projects, macros and scenes have UUIDs as well! The values can be seen by hovering on these
object on the Project Panel.

When a project is successfully created, a single folder with the designated title will be shown in the project panel.
Note that this project is not yet saved in the domain. The unsaved changes is denoted by a * and a blue title text. The
categories can be seen by unfolding the folder (by clicking the arrow icon), and are expected to be empty.

29

HowToGUI, Release 1.0

Fig. 1: The FXE_LOOP1 project. It contains various objects that can interact with FXE-related devices.

30 Chapter 3. The Project Panel

HowToGUI, Release 1.0

3.1.2 Loading Projects

Load an Existing Project

An existing project can be loaded using the “Load Master Project” dialog. The dialog is opened by clicking the “Load
an Existing Project” button in the toolbar.

Fig. 2: The Load Project dialog showing a selection of the available project in the domain, e.g. SA1.

Note: The selection option cache will allow loading a project from the local disk. It is the latest updated project
version from the project database.

In this dialog we can freely select our top-level project to be opened. We can either click a project name directly or
search for a project name in the search bar. Technically, after selecting a project our GUI client will request the project
data from the project database, routed via the GUI server. During this period we cannot operate with our client, it goes
into a busy mode and several options or panels are disabled. This is notified with a spinner widget in the project bar.

Find and Load Project with Device

The “Find and Load Project with Device” dialog provides an efficient and user-friendly way to locate specific projects
associated with devices and seamlessly load them into the Project Panel. The “Find and Load Project with Device”
button in the toolbar opens this dialog.

3.1. Projects 31

HowToGUI, Release 1.0

32 Chapter 3. The Project Panel

HowToGUI, Release 1.0

3.1.3 Saving Projects

There is unsaved changes in the project when the project title is denoted by a * and a blue text. Karabo objects with
unsaved changes would also have the same indication.

Changes in the project can be saved in repository by clicking the Save Project Snapshot button. When the project is
successfully saved, the unsaved indication will be removed, returning to a project title/karabo objects with black text.

Alternatively, saving can also be done by selecting the Save option on the project context menu (by right-clicking the
Project folder).

The users will also be prompted to save the project with unsaved changes when:

• closing the project;

• creating/loading a new project;

• disconnecting from the server; and,

• closing the Karabo GUI.

3.1.4 Trashing Projects

Unwanted projects can be marked as trashed via the Trash Project button. Trashing a project will result to a purple
project folder icon, indicating that it is moved in a different repository, namely for trashed projects. This can be undone
by clicking the Trash Project button again.

Trashed projects can still be retrieved via the Load Project dialog, with Showed trashed projects selected.

Alternatively, trashing/untrashing can also be done by selecting the Move to trash/Restore from trash option on the
project context menu (by right-clicking the Project folder).

Note that such changes are saved automatically.

3.1.5 Renaming Projects

It is possible to rename an existing project with the following steps:

1. Right-click the Project folder;

2. Select Rename menu. A dialog will appear.

3. Supply the new project title.

The new title will be then reflected on the project panel upon successfully renaming the project. Note that such changes
are not saved automatically, thus the unsaved changes indication.

3.2 Macros

A macro is a Python script that helps communicate with Karabo devices and automate recurring tasks. In the project
panel, macros can be (a) added/created, (b) loaded from local, and (c) loaded from device.

3.2. Macros 33

HowToGUI, Release 1.0

3.2.1 Creating Macros

A new macro can be created with the following steps:

1. Right-click the Macros folder

2. Select Add macro option. A dialog will show up. See figure below.

3. Fill the dialog with a macro-name. Note that the name is limited to alphanumeric characters, dashes, and un-
derscores.

By double-clicking on the newly listed macro, its default code will appear in the Macro Panel, which is located in the
upper-middle panel of Karabo GUI.

from karabo.middlelayer import Macro, MacroSlot, String

class Example(Macro):
name = String(defaultValue="Karabo")

(continues on next page)

34 Chapter 3. The Project Panel

HowToGUI, Release 1.0

(continued from previous page)

@MacroSlot()
def execute(self):

print("Hello {}!".format(self.name))

The above sample code will be generated, which can be freely edited in the Macro Panel. Similarly, as described in
HowToMiddlelayer, the macro consists of:

• A Macro class

• Properties (Karabo descriptors), e.g. String, Float, Double . . .

• Slots to execute public functions

3.2.2 Loading Macros from Local Machines

Macros can be also loaded from local machines as it is a Python script. This can be done by:

1. Right-click the Macros folder

2. Select Load macro. . . menu. A dialog asking for a Python file (*.py) will show up.

3. Select the macro file to be loaded in the project.

Upon successfully loading the macro, it will be added under the Macros folder with the file name as the macro name.
Note that such changes are not saved automatically, thus the unsaved changes indication.

3.2.3 Loading Macros from Devices

Some devices can also provide macros, similarly with providing scenes. These can be loaded in the project by the
following steps:

1. Right-click the Macros folder

2. Select Load from device. . . menu. A dialog will show up. See figure below.

3. Select the desired device and macro from the Device with Capabilities and Device Items, respectively.

By default, Macros are listed in the Projects Panel in the order they were created. However, the order can be changed
using the “Arrange Macros” right click context menu. This opens a dialog with a list of Macros in the project and
options to move them up or down.

3.2.4 Working with Macros

The macro has the following context menu options:

1. Edit

2. Duplicate

3. Delete

4. Save to file

5. Run

3.2. Macros 35

https://rtd.xfel.eu/docs/howtogui/en/latest/service_panels.html#the-macro-panel
https://rtd.xfel.eu/docs/howtomiddlelayer/en/latest/index.html#welcome

HowToGUI, Release 1.0

Fig. 3: The Load macro from device dialog shows that the scantool KARABACON has two macros available.

36 Chapter 3. The Project Panel

https://git.xfel.eu/karaboDevices/Karabacon

HowToGUI, Release 1.0

Renaming Macros

Renaming macros can be done with the following steps:

1. Right-click the Macro object. A context menu will appear.

2. Select Edit option. The dialog Edit macro will show up.

3. Supply the new macro Name.

The new name will be reflected on the project upon successfully renaming the macro. Note that such changes are not
saved automatically, thus the unsaved changes indication.

Duplicating Macros

Creating multiple copies of the macro on the project can be done with the following steps:

1. Right-click the Macro object. A context menu will appear.

2. Select Edit option. The dialog Duplicate object will show up.

3. Supply the following:

a. Title or the new macro name for the duplicate(s) (must be alphanumeric, dashes, and underscores only)

b. Start index of the duplicate(s). This value must be less than or equal with the end index.

c. End index of the duplicates(s). This value must be greater than or equal with the start index.

The number of copies that will be produced is the difference of End index and Start index, which is also indicated in the
dialog.. Resulting duplicates will then be listed under the Macros folder with names as new-macro-name + index.

Fig. 4: Duplicating NEW_MACRO with Start Index = 0 and End Index = 2 (left) would result to 3 copies (right).

Note that such changes are not saved automatically, thus the unsaved changes indication for the newly added macros.

3.2. Macros 37

HowToGUI, Release 1.0

Deleting Macros

Macros can be deleted from the project with the following steps:

1. Right-click the Macro object. A context menu will appear.

2. Select Delete option. The user will be asked for confirmation.

The macro will be removed from the Macros list upon successfully deleting it. Note that such changes are not saved
automatically, thus the unsaved changes indication on the Project.

Saving Macros to File

Macros can be saved as a Python file (.py) on the local machine with the following steps:

1. Right-click the Macro object. A context menu will appear.

2. Select Save to file option. A file dialog will appear.

3. Locate the folder to save and supply a file name for the macro.

Running Macros

Macros can be run not only on the Macro Panel but also in the Project Panel. This is possible with the following steps:

1. Right-click the Macro object. A context menu will appear.

2. Select Run option.

A new macro (device) instance will appear under the Macro object upon successfully running the macro. Clicking on it
will show its Configuration in the Configuration Panel. Macros can be instantiated only once, and the running instance
must be shut down before instantiating (and accepting changes in the macro code) again.

The macro instance can be shut down from the Configuration Editor (similar with device instances) or by right-clicking
the Macro Instance object and selecting the Shutdown option.

3.3 Devices

Projects enable easier access on devices. This helps bookkeeping of devices for specific operations, such as collecting
FXE LOOP 1 devices in the FXE_LOOP1 project.

This can be done by:

1. Adding a device server

2. Adding a device instance

38 Chapter 3. The Project Panel

HowToGUI, Release 1.0

3.3.1 Adding Device Servers

Device servers can be added in the project with the following steps:

1. Right-click the Device Servers folder. A context menu will show up.

2. Select Add server option. A dialog will show up. See figure below.

3. In the dialog, select the Server ID of the desired server from the list of existing servers.

4. Optionally, select the Host of the chosen server from the list of existing hosts. This is useful for servers that are
deployed through Karabo.

5. Also optionally, add a Description of the server.

Upon successfully adding the device server, it will be added under the Device Servers folder. Note that such changes
are not saved automatically, thus the unsaved changes indication.

Fig. 5: The server configuration dialog.

The device server context menu delivers several options:

1. Edit

2. Delete

3. Shutdown

4. Add device

5. Instantiate all devices

6. Shutdown all devices

7. Delete all devices

Editing a server provides the possibility to change the server name as well as the description in the project. Deleting
a server can be sometimes necessary if a project gets restructured. The shutdown option will request the device server
and all the devices to shutdown gracefully. Once the server has gone down, it will restart and come online again.

3.3. Devices 39

HowToGUI, Release 1.0

Fig. 6: The device server context menu creation dialog.

It is possible to instantiate and shutdown all devices of this device server. For instantiation, a list of device names is
forwarded to the GUI server, who instantiates the devices sequentially, which might take a little bit of time.

In the next chapter the creation and configuration of devices is explained.

3.3.2 Adding Project Devices

Devices can be added on the project with the following steps:

1. Right-click the Device Server object

2. Select the Add device option from the context menu. A dialog will show up.

3. Supply the following:

a. Device ID or the device name (must be alphanumeric, dashes, and underscores only)

b. Device class of the desired device. The list is the device classes that can be run on the selected server.

c. Configuration name, which is set default by default.

d. Optionally, the Description of the device.

Every device instance has a default configuration, which is created from the configuration derived from device class
schema. This configuration is not supposed to be deleted or renamed in the project.

Upon successfully adding the device, it will appear as a child of the selected device server. If the supplied device name
already exists in the system topology, the added device in the project will be the existing device (regardless of selected
device server and class). Otherwise, a new device instance will be added instead, and is offline by default. Note that
such changes are not saved automatically, thus the unsaved changes indication on the project, device server.

40 Chapter 3. The Project Panel

HowToGUI, Release 1.0

Fig. 7: The Add device configuration dialog.

3.3. Devices 41

HowToGUI, Release 1.0

3.3.3 Working with Devices

The project device has the following context menu options:

1. Edit

2. Configuration

3. Duplicate

4. Delete

5. Open device macro

6. Open device scene

7. Get Configuration

8. Instantiate

9. Shutdown

Fig. 8: The device context menu.

Depending on the device status, either online or offline, there are different possibilities such as starting an offline device
or shutting down an online device.

42 Chapter 3. The Project Panel

HowToGUI, Release 1.0

3.3.4 Project Device status

The status of project devices depends on the availability of the class, the online status of server and the device itself.

icon status description

Offline The device is offline

Offline; No Plugin The device is offline and the class plugin is missing

Offline; No Server The device and the server are offline

Online; Incompat-
ible

The device is online but the configured device class is different from the device class
that is online

Online The device is online and did not encounter an error

Online; Error The device online and has encountered an error

3.4 Device Configuration

Device configurations can be viewed as children of the device. It is convenient to have various configurations for
different experiments. Additional device configurations can be added on an offline device with the following steps:

1. Right-click the Device object. A context menu will show up.

2. Hover the Configuration option and select Add device configuration option. A dialog similar with
the Add device dialog will show up.

3. In the dialog, supply the new Configuration name. It should be unique in the device to be added.

5. Optionally, add a Description of the new device configuration.

In our example, we have created an additional configuration nolimits. The active configuration can be identified by a
tick mark and can be swapped by clicking the check boxes next to these.

Note that such changes are not saved automatically, thus the unsaved changes indication on the project, device server,
device instance, and device configuration.

Modifications of offline configurations can be done via the Configurator in the configuration panel. Every modified
device property or attribute will lead again to a modification of the project. It is important to mention that Karabo
only stores offline configurations in the project, however, it is possible to retrieve historic configurations from the data
loggers. This can be done via by the following steps:

1. Right-click the Device object. A context menu will show up.

2. Select Get Configuration option. A Configuration Timepoint dialog will appear.

3. Supply the Timepoint (date-time) of the configuration to be retrieved. For convenience, the user can utilize the
calendar on the dropdown menu and/or use the preset time buttons.

Upon successfully requesting for the configuration from past, it will appear after a while in the configurator. Depend-
ing on whether the device is online or offline, the changes are either highlighted with a blue box and need to be applied
or they are merged into the offline configuration.

3.4. Device Configuration 43

HowToGUI, Release 1.0

Fig. 9: A device with multiple configurations.

Fig. 10: The configuration from past dialog

44 Chapter 3. The Project Panel

HowToGUI, Release 1.0

3.5 Scenes

Scenes in Karabo provide a way to customise device views, covering any diagnostic or control elements in a compact
and comprehensive view. In the project panel, scenes can be (a) added/created, (b) loaded from local, and (c) loaded
from device.

Fig. 11: The scene context menu.

3.5.1 Adding Scenes

A completely new scene can be easily created and added on the project with the following steps:

1. Right-click the Scenes folder. A context menu will show up.

2. Select Add scene option. The Add scene dialog will show up.

3. Supply the dialog with a scene-name. Note that the name is limited to alphanumeric characters, dashes, and
underscores.

The new scene will now be listed under the Scenes folder upon successfully adding it. Double-clicking on it will show
a blank scene in the Scene Panel, which is located in the upper-middle panel of Karabo GUI. Note that such changes
are not saved automatically, thus the unsaved changes indication on the new scene object, scene folder, and project
folder.

3.5. Scenes 45

HowToGUI, Release 1.0

3.5.2 Loading Scenes from Local Machines

Scenes can be also loaded from local machines as it is an SVG file. This can be done by:

1. Right-click the Scenes folder

2. Select Load from local. . . menu. A dialog asking for an SVG file (*.svg) will show up.

3. Select the scene file to be loaded in the project.

Upon successfully loading the scene, it will be listed under the Scenes folder with the file name as the scenes name.
Note that such changes are not saved automatically, thus the unsaved changes indication.

3.5.3 Loading Scenes from Devices

Some devices can provide scenes. These can be loaded in the project by the following steps:

1. Right-click the Scenes folder

2. Select Load from device. . . menu. A dialog similar to the Load macro from device dialog will appear.

3. Select the desired device and scene from the Device with Capabilities and Device Items, respectively.

3.5.4 Working with Scenes

Opening scenes can be done by double-clicking the Scene object. The scene will then be displayed in the Scene Panel
located at the upper-middle panel of the Karabo GUI.

Note that opening scenes cause unsaved changes, thus the unsaved changes indication on the Scene object and the
Project folder.

Additional interaction are also provided in its context menu (right-click).

Fig. 12: The scene interaction menu

The scene context menu provides very useful features. It is possible to revert changes and replace from file.

46 Chapter 3. The Project Panel

HowToGUI, Release 1.0

Renaming Scenes

Renaming scenes can be done with the following steps:

1. Right-click the Scene object. A context menu will appear.

2. Select Edit option. The dialog Edit scene will show up.

3. Supply the new scene Name.

The new name will be reflected on the project upon successfully renaming the scene. Note that such changes are not
saved automatically, thus the unsaved changes indication.

Duplicating Scenes

Creating multiple copies of a scene on the project can be done with the following steps:

1. Right-click the Scene object. A context menu will appear.

2. Select Edit option. The dialog Duplicate object will show up.

3. Supply the following:

a. Title or the new scene name for the duplicate(s) (must be alphanumeric, dashes, and underscores only)

b. Start index of the duplicate(s). This value must be less than or equal with the end index.

c. End index of the duplicates(s). This value must be greater than or equal with the start index.

The number of copies that will be produced is the difference of End index and Start index, which is also indicated in
the dialog.. Resulting duplicates will then be listed under the Scene folder with names as new-scene-name + index.

Note that such changes are not saved automatically, thus the unsaved changes indication for the newly added scenes.

Deleting Scenes

Macros can be deleted from the project with the following steps:

1. Right-click the Scene object. A context menu will appear.

2. Select Delete option. The user will be asked for confirmation.

The scene will be removed from the Scenes list upon successfully deleting it. Note that such changes are not saved
automatically, thus the unsaved changes indication on the Project.

Saving Scene to File

Macros can be saved as an SVG file (.svg) on the local machine with the following steps:

1. Right-click the Scene object. A context menu will appear.

2. Select Save to file option. A file dialog will appear.

3. Locate the folder to save and supply a file name for the scene.

3.5. Scenes 47

HowToGUI, Release 1.0

Replace Scenes from File

Replacing a scene from file is possible when the scene is closed or opened. On this action all scene content from a
local file is replaced except the uuid and the simple name. This means that scene links will still work afterwards!

Revert Scenes

Reverting scene changes is translated to replacing the scene with the latest saved scene version in the local cache. A
condition for this action is that the scene must be closed.

3.6 Subprojects

Projects can link other projects by making them as their subprojects. A project can be added under on the Subprojects
folder by a) adding/creating a completely new project, and b) loading an existing project.

3.6.1 Creating Subprojects

Creating a subproject is very similar with creating a project. The main difference is that it will be saved in the the same
domain as the current project.

1. Right-click the Subprojects folder. A context menu will appear.

2. Select Add new project. . . option. A dialog similar with creating a project will show up.

3. Supply the new project title.

The new project will appear under the Subprojects folder upon successfully creating it. Note that such changes are not
saved automatically, thus the unsaved changes indication.

3.6.2 Add Existing Projects as Subproject

Linking an existing project as a subproject is very similar with `loading a project <load_project_>`_. The main
difference is that the lookup is limited to projects of the same domain as the current project.

1. Right-click the Subprojects folder. A context menu will appear.

2. Select Load project. . . option. A dialog similar with opening a project will show up.

3. Select the project from the list.

Note: Subprojects are essentially projects that are just linked in another project. Changes that are made and saved in
a subproject will always reflect on its links on other projects.

48 Chapter 3. The Project Panel

CHAPTER

FOUR

THE CONFIGURATION PANEL

The karabo GUI application offers a dedicated panel for device interaction. By means of this panel, often also referred
to as Configurator, it is possible to view and alter the device’s:

• Properties: ranging from primitive types (bool, int, float, string) to more complex data structures like images,
vectors and I/O channels

• Attributes: further specify properties (bounds, units, shape, etc)

• Slots: buttons that when clicked execute some action on the target device (turn on/off, read data, move, etc).

A device can be selected either from one of the Navigation Panel. This can be either the System Topology, the
Device Topology or the Project that contains it. Only in the case when an offline device is selected (device class),
the operator will be able to modify its default properties. In case of an online device is selected (device instance), the
current device properties will be shown.

Each property or attribute has an associated icon that helps identifying the type.

Type Property Attribute

Boolean

Floating point

Integer

List

Pair

Schema

String

Undefined

Also, properties like States or that display any type of Alarm are properly colored.

Note: The user will only be able to access the device properties accordingly to its access level (Admin, Operator, etc).

49

https://in.xfel.eu/readthedocs/docs/howtogui/en/latest/navigation_panel.html
https://in.xfel.eu/readthedocs/docs/howtogui/en/latest/project_panel.html
https://in.xfel.eu/readthedocs/docs/karabo/en/latest/library/states.html
https://in.xfel.eu/readthedocs/docs/karabo/en/latest/concepts/alarm_system.html

HowToGUI, Release 1.0

4.1 The Configuration Editor Toolbar

From the toolbar of the “Configuration Editor” the device configuration can be loaded (A) from an xml file or saved
(B) to an xml file, using the dedicated icons:

Besides these actions, the user can Print (C), Undock (D) or Maximize (E) the panel.

4.2 Device Configuration Example

The following image shows, as an example, the configuration panel for the DataGenerator class using the Admin
access level. The panel has only two columns:

1. The property or attribute name

2. The current default value

Readonly and reconfigurable parameters can be differentiated by color. Readonly parameters have a grey color as they
are less important for a default configuration.

In case of an online DataGenerator device, as shown in the image below, one additional column appears, which
is used to view the device’s online value. Additionally, two extra buttons for accepting and declining changes, are
appearing.

In this instance we can visualize:

• Read-only properties: State, DeviceID, Bool property, Vector property, True frequency, Output, etc.

• Read/write properties: Update frequency, Speed up

• Slots: Start, Stop and Reset

When we modify a property and did not apply the changes to the device, its changes will be highlighted in blue, as seen
on Update Frequency and Speed Up fields. It is possible to apply the changes via the Apply all button, or rollback
the changes to their previous value with the Decline all button. Value editing can also be done by immediately pressing
Enter key to apply the value or or cancel the modification by pressing the Escape key.

For every property displaying a value, double-clicking its “Current value on device” (green column) will provide a
Trendline Scene showing its evolution over time. For instance, the following image shows the evolution of the Float
Property.

4.2.1 Property Information

To obtain more information about a property, the operator can click on its type icon. For instance, for the vector
property, it is possible to access a detailed description containing the timestamp, the data type and important attributes
such as alias, tags, minimum and maximum values, etc.

The DataGenerator instance has an Output channel where the user can have access to the generated image data. Image
Data is essentially a noded data container. By clicking on the arrow icon beside the component it is possible to view
the encapsulated properties that define high and low-level information about the image (encoding, ROI offsets, shape,
etc).

50 Chapter 4. The Configuration Panel

https://in.xfel.eu/readthedocs/docs/howtogui/en/latest/central_scene.html#trendlines

HowToGUI, Release 1.0

4.2. Device Configuration Example 51

HowToGUI, Release 1.0

52 Chapter 4. The Configuration Panel

HowToGUI, Release 1.0

4.2. Device Configuration Example 53

HowToGUI, Release 1.0

54 Chapter 4. The Configuration Panel

CHAPTER

FIVE

THE SERVICE PANELS

The service panels are available in the Menu Bar of the karabo GUI. By default, no service panel is visible on startup.
The visibility of each panel can be stored in the local machine settings (QSettings) for the karabo GUI.

Fig. 1: The Service Panel Overview and Configuration

Activating any service panel will show the service in the Middle Section of the karabo GUI. Clicking Save panel
configuration will store the actual visible configuration.

5.1 The Alarm Panel

Alarms are tracked by the central alarm service and can be viewed and acknowledged through the Alarm Panel located
in the middle area of the GUI. It uses the following custom panel.

icon status description
None The device is working normally.
Warning A device property is in a value range where it should be monitored.
Critical A device property is in its critical value range.
Interlock The device has a triggered interlock condition.

In the first column of the panel the ID of the entry in the alarm service is shown, followed by the first time of
occurence and the time of occurence. The time tracking enables the operator to estimate the severity of a long
standing warning or alarm condition. The fourth column shows the deviceId, e.g. the device name from where the
alarm was triggered from. Afterwards, the property related to the alarm is described, it can be either a normal device
property or referred to a globalAlarmCondition, presented as global. The Type of the severity is provided with an
icon for quick visualization and identification. If the device author provided additional text information related to this
alarm, it will be shown the description column.

Alarms can be further of different nature. Next to normal alarm conditions, some alarms may require an active ac-
knowledgement in order to be deregistered from the alarm service. Acknowledgement is only possible when the device
is either shutdown or the alarm condition has vanished.

Double-clicking a row in the Alarm Panel will look up the deviceId in the Topology Panel.

55

HowToGUI, Release 1.0

Fig. 2: The alarm service widget.

5.2 The Logging Panel

The Logging Panel is an essential feature of the KaraboGUI. Depending on the filter setting of the GUI-Server, log
messages are forwarded to the Karabo GUI Client.

Fig. 3: GUI Server configuration

The forwarded log level can be configured on the GUI server as shown in the (Fig. %s). The GUI client will receive
every log message from the whole Karabo Topic, which is why the default is set to INFO, as logging can result into a
denial of service.

Double-clicking a row in the Logging Panel will look up the deviceId in the Topology Panel.

56 Chapter 5. The Service Panels

HowToGUI, Release 1.0

Fig. 4: Logging Panel

5.3 The Macro Panel

The Macro Panel allows the user to write Python scripts for small, recurring tasks. A macro can be created or loaded
from a device via the Project Panel.

Once it has been created or loaded, just double-click it to send it to the Macro Panel, where a view similar to the
following will be shown.

This panel consists of a toolbar, which provides shortcuts to:

• A - Create a macro instance.

• B - Create a macro instance in debug mode

• C - Save Macro to a file.

• D - Increase font size.

• E - Decrease font size.

• F - Check the Code quality.

• G - Print the macro panel.

• H - Undock the panel.

• I - Maximize the panel.

The blue rectangle is the editor where one can view and edit the macro code. For newly-created macros, a default
template is shown. This macro has a property called Name and a slot called execute. The red rectangle is a console
that shows information about the macro runtime, such as its connection status or its output.

5.3. The Macro Panel 57

https://rtd.xfel.eu/docs/howtogui/en/latest/project_panel.html#macros

HowToGUI, Release 1.0

Fig. 5: Macro Panel

5.3.1 Features in Macro Editor

The Macro Editor offers various convenient features, similar to those found in other code editors, that significantly ease
the life of coders.

Code quality checker:

The Code Quality Checker tool button (The button at ‘F’ position in the above image) runs pyflakes and
pycodestyle on the code in the editor. Using pyflakes the quality checker analyzes the code and identifier
various error, highlighting them with a red squiggly underline. Additionally, pycodestyle checks the code
against the style conventions defined in PEP8, marking any inconsistencies in a blue squiggly underline.
A comment below the code-line will also be displayed in case of any error or style inconsistency.

The tool button has three different states.

Fig. 6: Code Quality Checker: Before running.

Fig. 7: Code Quality Checker: With no error.

When there is any error or style issue, the tool bar shows an additional button to clear the comment about
the error/issue and the underline, from the editor.

58 Chapter 5. The Service Panels

HowToGUI, Release 1.0

Fig. 8: Code Quality Checker: When any error.

Auto-Suggestion:

The editor suggests the possible completions or options on typing at least three letters. It provides intelli-
gent suggestions of names, functions, classes, keywords from the imported and common namespace like
“karabo.middlelayer”

Syntax highlighting:

The Macro editor helps to visually distinguish different element of the code - like keywords, variables,
strings, comments, by applying different colors/styles to them.

Find and Replace:

The editor provides a Find or/and Replace functionality through a toolbar. The Ctrl+F keyboard shortcut
shows the Find toolbar while Ctrl+R shows the Replace toolbar. The toolbar allows to search for the text
with case-sensitive option on or off. The tool highlights all the search hits in the editor and displays the
total number of search result in the toolbar.

Fig. 9: Find Replace Toolbar

Indentation Guide:

The indentation guide- as vertical line on the left side of the code, represents the level of indentation of
each line. This helps to easily identify any inconsistencies or error in the indentation.

Line wrap guide:

The vertical line in the editor indicate when a line reaches the Python standard limit of 79 characters.

5.3. The Macro Panel 59

HowToGUI, Release 1.0

Code Fold:

The plus and minus icons on the left side- after the line number- enables to expand and fold a code block.

5.3.2 Keyboard shortcuts in Editor

• Ctrl+C : Copy the selection

• Ctrl+X : Cut the selection

• Ctrl+V : Paste from clipboard

• Ctrl+Z : Undo the previous action

• Ctrl+F : Show Find toolbar

• Ctrl+R : Show Replace toolbar

• Ctrl++ : Increase font size

• Ctrl+- : Decrease font size

• Tab : Indent the selected line(s) by four spaces

• Shift+Tab : De-indent the selected line(s) by four spaces

5.3.3 Instantiating a Macro

In order to instantiate a macro, the user can either run it from the Project Panel or use the A button from the toolbar.
In case there is any error with the writen code, it will be logged in the Log Panel, where the user will have access to its
stacktrace, which can help correcting the code.

Once it has been instantiated, information about the connection will be shown in the console window (red rectangle).

Its instance is accessible via the Project Panel where, after selected, will show its configuration in the Configuration
Panel:

This panel shows the macro default properties (State, Status, etc) and also the user-defined properties (only Name in
this example). Also, the execute slot is provided as a button for running the macro. The user can provide as many
properties and slots as needed.

In this example, clicking the execute slot in the Configuration will print a message containing the name property in the
console:

60 Chapter 5. The Service Panels

https://rtd.xfel.eu/docs/howtogui/en/latest/project_panel.html#macros
https://rtd.xfel.eu/docs/howtogui/en/latest/service_panels.html
https://rtd.xfel.eu/docs/howtogui/en/latest/project_panel.html#macros
https://rtd.xfel.eu/docs/howtogui/en/latest/configuration_panel.html
https://rtd.xfel.eu/docs/howtogui/en/latest/configuration_panel.html

HowToGUI, Release 1.0

Note: Ideally the tasks executed in a macro should be small, not having long loops or lasting too long. In order to
cancel a macro execution, the user can click on the Cancel slot in the Configuration Panel.

5.3.4 Shutting Down a Macro

A macro can be shutdown by means of the Shutdown instance button in the Configuration Panel or also from the Project
Panel.

5.3.5 Rerunning a Macro

To reflect changes made to the macro code, it is necessary to first shutdown the current instance (if any) and instantiate
it again from the toolbar or the Project Panel.

5.3. The Macro Panel 61

https://rtd.xfel.eu/docs/howtogui/en/latest/configuration_panel.html
https://rtd.xfel.eu/docs/howtogui/en/latest/configuration_panel.html
https://rtd.xfel.eu/docs/howtogui/en/latest/project_panel.html#macros
https://rtd.xfel.eu/docs/howtogui/en/latest/project_panel.html#macros
https://rtd.xfel.eu/docs/howtogui/en/latest/project_panel.html#macros

HowToGUI, Release 1.0

62 Chapter 5. The Service Panels

CHAPTER

SIX

THE SCENE PANEL

The Scene Panel is Karabo’s default container for showing or editing scenes. Scenes in Karabo provide a way to
customise device views, covering any diagnostic or control elements in a compact and comprehensive view. The image
below shows an example of a master panel in a central scene. Each one of this components will be described in this
document. For now, It’s relevant to notice that we can represent the relations between devices, access the system state
and even provide links to sub-systems with their respective scenes (bottom right).

The following example shows a detailed panel in a central scene. We see how customizable a scene can be, offering
display values for gauges, spark lines indicating trends, state and alarm conditions, etc. Note how the state and alarm
condition are separated for the gauge Gauge_Down2. The bottom buttons are hyper-links to the other detail panels and
the master panel.

A Karabo scene is not necessary created by a graphical user interface (GUI), also devices can have scenes where they
can be downloaded from. If a scene is derived from a device, it is typically shown in control-mode only, meaning that
no manipulation of the scene elements can be done.

For editable scenes, a project is also needed. After creating a project, the operator can create a new scene or load a
previously created one and is free to start customizing it and saving/replacing it in his project. For this customization,
Karabo provides a variety of features that can be used via the Scene Toolbar and widgets, the so-called Karabo
Controllers.

63

HowToGUI, Release 1.0

64 Chapter 6. The Scene Panel

HowToGUI, Release 1.0

6.1 Scene Toolbar

The scene toolbar houses necessary tools for editing the scene.

• A - Enter design mode, where it is possible do add/remove/modify objects

• B - Accept or discard changes

• C - Selection tool

• D - Enable/Disable Grid snapping

• E - Insert text field

• F - Draw line

• G - Draw rectangle

• H - Create Scene_Link

• I - Create Web_Link_
• J - Layout customization for Widget_Layouts

• K - Tools for selecting all items, copying, pasting and deleting

• L - Actions for moving objects. Also accessible using the key strokes (arrow keys)

• M - Bring selected item(s) to front or send to back

• N - Base options: Dock/Undock/Maximize

6.1.1 Widget Layouts

Configuring the correct widget layouts can be tricky. For grouping widgets in a common layout, first it is needed to
select the desired widgets using the tool C shown above. With this tool, the user is able to either make a rectangle
selection (please note that the whole widget must be inside the rectangle) or manually select all widgets while holding
the Shift key. After the selection, if is possible to group the widgets in a layout (tool I) in any of the following manners:

• Group in Fixed Layout: the widgets will be grouped as they are;

• Group Vertically: the widgets will be grouped in row major, where each widget will occupy one row of the layout;

• Group Horizontally: the widgets will be grouped in column major, where each widget will ocupy one column of
the layout;

6.1. Scene Toolbar 65

HowToGUI, Release 1.0

• Group in a Grid: the widgets will be grouped in a grid. The row and column count will be defined more or
less based on the current widgets location. That means that the user still need to drag the widget where they are
supposed to stay. Note that it is impossible to correctly group the widgets exactly as the user meant, but it offers
good results in most of the cases;

• Ungroup: ungroup already grouped widgets. You may want to ungroup the default property layouts to provide
some finer-grained layouts for your scene;

• Group Entire Window: auxiliar tool for grouping the whole screen as it is.

When dragging a property from a device instance into the scene panel, this property comes along with, maybe, some
labels and additional widgets, all grouped in a proper layout. If a more concise grouping is needed, it might be needed
to ungroup these layouts and group them again as needed.

6.1.2 Scenelink - Hyperlinks between Scenes

It’s possible to link between scenes using the scene link widget. For this, please go to edit mode of the scene and
select the tool Add scene link to scene from the toolbar. Afterwards, click on the scene and a dialog will pop up for
configuration.

Scenelink - Hyperlink widget:

In this configuration window the target can be selected as well as the link widget should open the scene in the Main
Window, or in a new pop-up Dialog.

66 Chapter 6. The Scene Panel

HowToGUI, Release 1.0

6.1. Scene Toolbar 67

HowToGUI, Release 1.0

68 Chapter 6. The Scene Panel

CHAPTER

SEVEN

WIDGETS - CONTROLLERS AND CONVERSION

Every property type has a default widget. For example, a bool property will be translated to a Checkbox. An editable
input to a Text Line Edit, etc. It is possible to convert from one widget type to another for customization. In order
to mutate a controller widget please select the widget and right-click to show the custom menu. The picture below
shows the possible conversions for a State property. The default controller is a State Color Field widget.

These conversions offer a vast range of scene customizations.

Other common conversions are from vectors to plots. A vector property (list of values) can be seamlessly converted to
a Plot, as shown in the following Figure. As it is known for the XY Plot, one more vector is needed for the plot to be
valid.

69

HowToGUI, Release 1.0

7.1 Basic Widgets

The Tables below offer a cheatsheet regarding the possible widgets the user can choose for displaying primitive types.

Basic Widgets
Integer Float Boolean String Vector

Evaluate_Expression R R R
Hexadecimal_ W
Single_Bit R
Value_Field R R R
SpinBox W W
Toggle_Field RW
Switch_Bool R
Text-Float-Integer-Field W W W
List RW

7.1.1 Evaluate Expression

This widget can be used to manually define the formatting using python string formatting ("{:.2f}".format(x)) or
to derive another value with a function.

The full namespace of python builtins and numpy can be used to define the function. The example below uses the
log function of numpy.

Note: The Evaluate Expression widget background is colored according to the alarm and warning attributes of

70 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

images/widgets/string_change_expression.png

the property if the value exceeds a threshold.

7.1.2 List

The List widget is used to display vector properties. This widget is used for both displaying and editing vector
properties and does not provide any alarm information.

The edit widget provides a list dialog which can be opened by clicking on the button to the right.

The list dialog offers a comfortable way to modify vectors with a large number of elements.

7.1.3 Value Field

The Value Field refers to a default widget for representing values. It is typically chosen as first widget when
a normal readonly property is dragged onto the scene. This widget is able to visualize and work with defined
property displayTypes of ‘bin’, ‘oct’ and ‘hex’. If the property defines one of the attributes absoluteError or
relativeError, the widget will derive the formatting display. For floating point properties a maximum precision of
8 is provided.

Note: The Value Field widget is one of the first choice elements to display alarms and warnings of simple property
types. The widget background is colored correspondingly and the value exceeded an alarm value.

7.1. Basic Widgets 71

HowToGUI, Release 1.0

72 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.1.4 Generic Lamp

This widget is used for string properties which have a displayType State, the so-called State Elements. The
property value is displayed with the corresponding state color.

7.1.5 State Color Field

This widget is used for string properties which have a displayType State, the so-called State Elements. In addition,
this widget comes with a context menu action to display the state string on the widget!

7.1.6 Single Bit

This widget is used to visualize single bits from integer properties. It has a rectangular rounded shape and comes with
two context menu options:

• Change the bit number to evaluate

• Invert the color logic

By default the State.ACTIVE is used when the Bit is actively set! The State.PASSIVE color then illustrates if the
Bit is not set.

7.1. Basic Widgets 73

HowToGUI, Release 1.0

7.1.7 SpinBox

The spinbox can be referred to as a standard widget in every Qt application. This widget comes with two context menu
options

• The number of decimals (default: 3)

• The stepsize which is can be eventually used for stepping (default: 0.0)

Note: The stepping via a spinbox widget is achieved by using arrow key-strokes!

74 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.1.8 Switch Bool

Shows the operator the state of the bool property with colors in a circular shape. By default the State.PASSIVE
color is used for False and the State.ACTIVE color belongs to True. The logic of the coloring can be toggled via
the context menu of the widget.

7.1.9 Text-Float-Integer Field

The field boxes are building the default widgets for editing the property values of basic float, integer and string
types.

In addition, the Float Field has a context menu option to assign the number of decimals. The default value (-1)
disables the decimal formatting. Once, a decimal has been specified, a validator will take care of correct value input.

7.1. Basic Widgets 75

HowToGUI, Release 1.0

7.1.10 Toggle Field

As the default widget for a boolean this widget simply shows the True and False with a check-mark in a box.

7.1.11 The Table Element

The table-element is applicable for VECTOR_HASH properties, which have a ‘rowSchema’ attribute. The rowSchema is
a Hash, which defines the column layout, i.e. column count, column data types and column headers.

In case the table description (rowSchema) contains a ‘displayedName’ field for a property this is used as the column
header, otherwise the property key is used.

• For string fields with options supplied the cell is rendered as a drop down menu.

• Boolean fields are rendered as check boxes.

Additional manipulation functionality includes, adding, deleting and duplicating rows (the latter require a cell or row
to be selected).

The Table widget supports drag and drop of deviceId’s from the navigation panel. Dropping on a string cell will
replace the string with the deviceId. Dropping on a non-string cell or on an empty region will add a row in which the
first string-type column encountered is pre-filled with the deviceID.

76 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.2 Functional Widgets

Functional Widgets
Integer Float Boolean String Vector

ComboBox RW RW RW
Analog_Widget R R
Progress_Bar R R
TextLog R
PopUp R
Slider W W
Knob_ W W
DeviceSceneLink R

7.2.1 Device Scene link

The Device Scene Link is a widget that offer features similar to the one offered by the Scene_Link_ but differs from
it in the sense that the scene offered is not stored by the project but generated dynamically by the device itself.

In order to include a Device Scene Link one needs to drag and drop the property availableScenes into a scene
in edit mode and select the appropriate widget type.

Once the property is on the scene one can adapt which one of the scenes provided by the device, as well as the text and
target panel similarly to what is offered by the Scene Link.

7.2.2 Analog Widget

The Analog Widget is fully designed to display alarms and warnings of a property. It provides an estimate how far
the actual value (indicated as black scaler) is within or close to an alarm or warning region.

Note: For this widget a set of attribute values for alarms or warnings has to be provided. Hence, either alarmLow and
alarmHigh or warnLow and warnHigh must be defined on the karabo property.

7.2. Functional Widgets 77

HowToGUI, Release 1.0

78 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.2.3 Combo Box

The so-called ComboBox widget is used to edit karabo properties which have a predefined selection of values. In the
example shown below the Karabacon scantool has a fixed scan type selection which can be then edited.

Note: For this widget the attribute options has to be defined on the karabo property with defined values.

7.2.4 Progress Bar

The Progress Bar widget shows to the user the property percentage value taking in consideration its maximum and
minimum values.

Note: For this widget attribute values for a mininum value minInc or minExc and a maximum value maxInc or
maxExc must be defined on the karabo property.

7.2. Functional Widgets 79

HowToGUI, Release 1.0

7.2.5 PopUp

If the widget is configured as a PopUp, the value of the property will be shown in a pop-up dialog whenever changes
occur.

7.2.6 Slider

The widget can be changed to a Slider enabling to comfortably slide through the minimum and maximum values of a
property. This widget is typically used for gain or exposure settings in cameras.

The widget comes with a number widget to show the current edit value. This can be optionally disabled. In addition,
the step size of the slider can be configured via the context menu.

Note: For this widget attribute values for a mininum value minInc or minExc and a maximum value maxInc or
maxExc must be defined on the karabo property.

7.2.7 Text Log

This widget is typically used to display and log the status property of devices. Every value update with a new timestamp
will be displayed. It comes together with a clear button and a timestamp for each value modification.

80 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.3 Icon Widgets

7.3.1 Iconset

This type of widget will just show a icon in the scene.

It’s possible to add an icon image using an url or from a file.

7.3.2 Icons

The ‘Value Field’ for an integer, a floating or a string property can be converted to an Icon Widget using the right click
context menu item Change Widget -> Icons. The Icon widget can show an icon corresponding to a condition, for the
value.

Custom icons can be set on Icon Widget depending on the property values. This can be done using the ‘Change Icons’
dialog. Use Icons:Properties-> Change Icons. . . right click context menu items to open the dialog.

In order to define a condition, enter the value and hit “+” button. For floating properties the dialog provides radio
buttons to choose the operator ‘<’ or ‘<=’. For integers the operator ‘<=’ is selected by default and the radio buttons
are hidden.

For string properties with options, the dialog shows up with these options listed. For string properties with no pre-
defined options, the dialog provides a widget to enter the value and hit “+” button to add it.

7.3. Icon Widgets 81

HowToGUI, Release 1.0

Select the condition from the list and use
• ‘Open Icon File’ to open an image file containing the icon.

• ‘Paste from Clipboard’ to paste the image from the clipboard. Please

make sure to copy the image (ie, file content) and not the image file.

The preview of the imported icon can be seen on the right side of the dialog.

It is further possible to remove a selected condition via “-” button.

7.4 Plot Framework

Karabo has a builtin plot framwork based on PyQtGraph. Typically, a plot comes with natively provided extra features
which are shown in the Context Menu. The context menu is accessible like in any other widget controller by selecting
the controller in the design mode of the scene and via right-clicking on the plot widget.

Commonly, axes configurations can be accessed via native double-clicking on the plot axes for the Axis Menu or a few
settings can be adjusted via a right-click on the plot itself to trigger the View Menu.

The Axis Menu is available to set the Range of the axis of interest. Either autorange or a fixed range can be defined.
The View Menu offers the possiblity to autorange a plot or if available, configure the linear or logarithmic scale of a
plot.

The next sessions will describe all plot widgets available in Karabo.

82 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.4. Plot Framework 83

HowToGUI, Release 1.0

Graph Framework
Integer Float Boolean String Vector

Vector Bar Graph R
Vector Fill Graph R
Vector HistoGram Graph R
Vector XY Graph R
Vector XY Scatter R
VectorRoll Graph R
MultiCurve Graph R R
Sparkline R R
Scatter Graph R R
Trend Graph R R R
State Graph R
Alarm Graph R

7.4.1 Trend Graphs

Trend Graph is a widget that shows the evolution of one or more properties over time. The plot itself offers quick access
buttons to scale the trend data logs in either:

i. 10 minutes

ii. one hour

iii. one day

iv. one week.

The trend graph may be set to either display the full range of values or a detailed zoomed range. A trendline will provide
automatic data reduction after 900 values. In addition, a trend graph can request historic data of up to 500 values from
the Dataloggers.

• Data will be requested when there is no data

• Data will be requested when the x-axis is sufficiently changed (buttons)

• Data will be requested when the operator zoomes in and has less data points

The same functionality is available for the State and Alarm properties of devices.

7.4.2 Multi-Curve Graph

The multi-curve graph is the widget to choose if multiple properties have to be plotted with respect to a reference (x).

The property that is mutated for this controller is referred to as the reference property. Whenever this property is
externally updated, the graph will add another measurement point. A typical use case would be a scan of multiple
properties with respect to a reference. The toolbar of this widget is equipped with a reset button which can be externally
armed with a boolean property.

84 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.4. Plot Framework 85

HowToGUI, Release 1.0

86 Chapter 7. Widgets - Controllers and Conversion

HowToGUI, Release 1.0

7.4.3 Sparkline

The sparkline is similar to a trend graph and shows changes of a property over the selected time base.

• The timebases can be chosen to be either 60 seconds, 10 minutes or 60 minutes

• The sparkline maximum number of data points is 120 in an average fashion for all time bases

• The sparkline will request historic data at the beginning

• A change indicator arrow will provide the direction in case of changes larger than 5%

• The minimum and maximum value of the bins are plotted in addition

In this widget it is possible to disable or enable the alarm ranges via the context menu.

7.4. Plot Framework 87

HowToGUI, Release 1.0

88 Chapter 7. Widgets - Controllers and Conversion

CHAPTER

EIGHT

INDICES AND TABLES

• genindex

• modindex

• search

89

	The Karabo GUI
	Getting Started
	How to connect to the GUI Server

	The Cinema
	The Processing Lamp

	The Navigation Panel
	System Topology
	Control Server
	Device Server
	Context menu
	About

	Device Class
	Configuration
	Context menu

	Device Instance
	Instance status
	Alarm levels
	Device status
	Configuration
	Context menu
	Opening Default Device Scene
	About

	Expanding/collapsing the tree

	Search Bar
	Searching Karabo components
	Navigating through the results
	Case-sensitive search
	Regular expressions

	The Project Panel
	Projects
	Creating Projects
	Loading Projects
	Load an Existing Project
	Find and Load Project with Device

	Saving Projects
	Trashing Projects
	Renaming Projects

	Macros
	Creating Macros
	Loading Macros from Local Machines
	Loading Macros from Devices
	Working with Macros
	Renaming Macros
	Duplicating Macros
	Deleting Macros
	Saving Macros to File
	Running Macros

	Devices
	Adding Device Servers
	Adding Project Devices
	Working with Devices
	Project Device status

	Device Configuration
	Scenes
	Adding Scenes
	Loading Scenes from Local Machines
	Loading Scenes from Devices
	Working with Scenes
	Renaming Scenes
	Duplicating Scenes
	Deleting Scenes
	Saving Scene to File
	Replace Scenes from File
	Revert Scenes

	Subprojects
	Creating Subprojects
	Add Existing Projects as Subproject

	The Configuration Panel
	The Configuration Editor Toolbar
	Device Configuration Example
	Property Information

	The Service Panels
	The Alarm Panel
	The Logging Panel
	The Macro Panel
	Features in Macro Editor
	Code quality checker:
	Auto-Suggestion:
	Syntax highlighting:
	Find and Replace:
	Indentation Guide:
	Line wrap guide:
	Code Fold:

	Keyboard shortcuts in Editor
	Instantiating a Macro
	Shutting Down a Macro
	Rerunning a Macro

	The Scene Panel
	Scene Toolbar
	Widget Layouts
	Scenelink - Hyperlinks between Scenes

	Widgets - Controllers and Conversion
	Basic Widgets
	Evaluate Expression
	List
	Value Field
	Generic Lamp
	State Color Field
	Single Bit
	SpinBox
	Switch Bool
	Text-Float-Integer Field
	Toggle Field
	The Table Element

	Functional Widgets
	Device Scene link
	Analog Widget
	Combo Box
	Progress Bar
	PopUp
	Slider
	Text Log

	Icon Widgets
	Iconset
	Icons

	Plot Framework
	Trend Graphs
	Multi-Curve Graph
	Sparkline

	Indices and tables

