
Scantool
Release 1.0

Controls

Nov 12, 2024

CONTENTS

1 Introduction 3
1.1 Responsibilities and Limitations . 3
1.2 Tips and tricks . 4

2 General Information 5
2.1 Supported devices . 5
2.2 Scans . 9
2.3 Acquisition Modes . 9
2.4 Device Related Settings . 10
2.5 Scan Environment Settings . 10
2.6 Stopping Policy . 10

3 How to setup the DAQ 13

4 The Graphical User Interface (GUI) 15
4.1 Device environment . 16
4.2 Scan settings . 17
4.3 Scan control and history . 18
4.4 Real time and historical plots . 18

5 Advanced Settings and Tools 21
5.1 Templates . 22
5.2 Logbook . 22
5.3 Custom Scan Patterns . 22

6 Extensions 23
6.1 Data source normalizer . 23
6.2 Motor step transforms . 24
6.3 Aligner . 24

7 The Command Line Interface (CLI) 27
7.1 Configure the scan environment . 27
7.2 Launching scans . 29
7.3 Stopping Scans . 31

8 Macros 33
8.1 Device provided macros . 33
8.2 Other Macros . 35

9 Karabacon Scheduler 37
9.1 Scheduling Scans . 37

i

9.2 Executing Scans . 37

10 ChangeLog 41

11 Indices and tables 49

ii

Scantool, Release 1.0

Contents:

CONTENTS 1

Scantool, Release 1.0

2 CONTENTS

CHAPTER

ONE

INTRODUCTION

The karabo scantool (Karabacon) is a device that can be controlled via a command line interface (CLI), so-called
ScanMacro’s or via the graphical user interface (GUI) to perform scans.

For this reason, the scan device is able to carry the whole device environment with aliases in so-called TableElements,
which should be configured before instantiation and stored in project files. The explanation of the device types are
provided in the General section.

In addition, recording scans relies on a pre-configured the DAQ environment and the use of a DaqController proxy
device. The brief introduction is given in section How to setup the DAQ.

1.1 Responsibilities and Limitations

The Karabacon scantool is designed to perform scan-related tasks (motion). This helps to ensure stable operation of
the primary functions. These are:

• Controlling motors

• Controlling triggers

• Controlling the DAQ

• Provide basic on-line preview

Therefore it has known limitations in non-essential tasks, including:

• Online visualization is for now limited to scalar data. For other data types, currently a processor has to be used.

• The scantool does not carry extensive data analysis features. Complex analysis have to go into a separate device.

• The scantool cannot make decisions. It cannot protect you or your equipment against bad configurations. Such
functionality can be achieved by limits, interlocks and specialized devices. However, it is possible to control the
scantool Karabacon via a macro and use the pauseEachStep feature to use filters and do necessary actions from
software.

• The Karabacon is not handling trainId synchronization. This should be done during online/offline data analysis
from trainId’s.

• High accuracy synchronization to start acquisition of detector devices (triggers) requires dedicated hardware.
This is in most cases not available at the moment (Master Trigger).

Karabacon’s functionality can be extended with separate devices. We provide multiple interfaces for such extensions.

3

Scantool, Release 1.0

1.1.1 Troubleshooting

The scan device’s status displays error messages to guide through the process of configuring and troubleshooting. Some
of the most common messages are related to configuring the scan environment, including:

• Failed to set up the DAQ: General DAQ troubleshooting, probably one of the selected devices was not instantiated,
or there are no selected devices.

• Motors not ready for scan: Any selected motor is not instantiated or a motor state is not ACTIVE or ON.

• Data sources not ready for scan: Any selected data source device is not alive (instantiated) or does not have the
selected key.

• Trigger sources not ready for scan: Any selected trigger device is not alive (instantiated) or in a wrong state.

• No valid motor axis, sources selected . . . : The entered axis is not supported by the scan device or the device or
property does not exist. The latter can be a typo!

• List of motors and scan points must be of the same length: You need to configure the correct number of motors
for your scan.

1.2 Tips and tricks

In principle, Karabacon is capable of ~5 Hz stepping speed, depending on the motor. Yet some of the default settings
slow this down to be more in-line with general user requests. These include:

• Reduce pipeline waiting time: In case of pushing speed, the default 1.5 seconds overhead should be reduced.
Longer waiting times provide better synchronization for slow processors.

• Averaging normalization: While proper synchronization would require a trainmatcher device, basic synchroniza-
tion can be achieved via a running average processor.

4 Chapter 1. Introduction

CHAPTER

TWO

GENERAL INFORMATION

2.1 Supported devices

The scantool distinguishes three different device types: Triggers, Data Sources and Motors. These devices either have
a standardized interface, or the support of the device is explicitly integrated in an alias mapping within the scantool.

The motor and data source devices can have different axes and sources. An example for a multiple axis system is a
slitsystem inheriting five (5) axis - default, x, y, gapx, gapy. A default axis is always provided, in case of the slitsytem
the default is the x axis.

The following devices are currently integrated.

2.1.1 Motors

Following device classes as motor interfaces are supported:

5

Scantool, Release 1.0

Motors axis name
BeckhoffMC2Base default
BeckhoffMC2Beckhoff default
BeckhoffMC2Technosoft default
BeckhoffMC2Elmo default
BeckhoffMC2Hexapod default
BeckhoffSimpleMotor default
DoocsPhaseshifter default
CrystalManipulator default
CrystalManipulatorGroup default
DoocsOpticalDelay default
DoocsPhaseshifter default
DoocsUndulatorEnergy default
JJAttenuator default
MonoChromator default
MonoChromatorGroup default
MonoChromatorEnergyChanger default
OpticalDelay default
PicoMotor default
PpLaserDelayCopy default
RobotManipulatorStaubli default
SlitSystem default, x, y, gapx, gapy
SoftMono default
TangoMotor default
X2TimerML default

If the device to be scanned is not in the list of supported devic classes then it might be integrated via abstract motor
interface.

Abstract Motor Interface

A device might have interfaces property that defines interfaces it is compatbile with. If the interface property contains
Motors then first the Standard motor with limits interface with following mandatory properties:

• actualPosition (DOUBLE/FLOAT)

• targetPosition (DOUBLE/FLOAT)

• isCWLimit (BOOL)

• isCCWLimit (BOOL)

• isSWLimitHigh (BOOL)

• isSWLimitLow (BOOL)

and commands

• move

• stop

is validated. If one or several properties or commands are missing then the device is validated against the Standard
motor without limits interface. Such a device should contain the actualPosition, and targetPosition properties and move,
stop commands.

In general, it is expected that a motor device has the state State.ON when it is ready to move and goes to State.
MOVING when it is moving towards the target position. If a motor is following the target position, it is expected to use
State.ACTIVE instead of State.ON.

6 Chapter 2. General Information

Scantool, Release 1.0

Custom Motor Interface

If the requested scan device is not supported with the abstract motor interface, then there is a possibility to use custom
a motor interface. The device has to be added as a motor with custom axis definition starting with “custom#”:

• Mandatory attributes are actualPosition and targetPosition: custom#actualPosition=someReadProperty&targetPosition=someWriteProperty

• Other attributes isCWLimit, isCCWLimit, isSWLimitHigh, isSWLimitLow, move, stop and state are not
mandatory.

• Example of custom motor having move and stop slots and soft-limit switches:
custom#actualPosition=actual&targetPosition=target&move=moveSlot&stop=stopSlot&isSWLimitLow=limitLow&isSWLimitHigh=limitLow

Fig. 2.1: Custom motor definition in the device tree.

2.1.2 Data sources

Data sources are considered to represent a single point of data on device level. Any scalar attribute of any karabo device
can be added as a data source. Therefore there is no default value anymore. An internal mechanism considers if the
data source is a pipeline value or not. If the data source depends on the pipeline processing, the data source is awaiting
for a small amount of time (~second) a new value. It is possible to use vector data source. Currently ascan and dscan
in Single acquisition mode with one vector data source is supported. Scan is plotted as a mesh scan.

Warning: The “Data Sources” table does not replace the DAQ. It should be used only for online preview and
alignment. Data should be recorded by the properly configured DAQ.

2.1.3 Triggers

Triggers are a key element of the scantool. They trigger the data generation for the data sources. In the scantool the
acquisition of all trigger devices is done in a synchronous way by software.

The scantool can only perform basic trigger configuration. Specialized setup must be done manually. The operator must
also be familiar with the particular trigger device: some devices can take minutes to configure, others carry significant
overhead or synchroniztion issues. The online preview data is collected after the ACQUISITION of all data triggers
has completed. Supported devices are:

• LPDMainControl

• GotthardDetector

• JungfrauDetector

• AdqDigitizer

2.1. Supported devices 7

Scantool, Release 1.0

• GreatEyes

• SimulatedTrigger

• AgipdComposite

• PulsePickerTrigger

• DoocsPulseKicker

The trigger devices (device developers) are responsible to provide

• A start acquisition slot

• An acquisition time property (FLOAT) which configures the trigger

A common state behavior for a trigger device is:

• State.PASSIVE (Derived): Trigger is NOT ready for data acquisition

• State.ACTIVE (Derived): Trigger IS ready for data acquisition

• State.ACQUIRING (Derived): Trigger is acquiring data

Warning: CAMERAS are not supported as trigger sources as they don’t tell us when the acquisition is done. Just
make sure the camera is ACQUIRING data.

Note: Unfortunately AGIPD cannot be supported at the moment as this device does not provide any information if it
is ACQUIRING data or not.

Note: Depending on the type, scan does not always require motors, data sources and triggers.

Scan devices are stored in deviceEnv.motors, deviceEnv.sources and deviceEnv.triggers tables and can be edited via
device tree available in the device scene.

8 Chapter 2. General Information

Scantool, Release 1.0

2.2 Scans

The scantool provides following scans:

NameDescription
as-
can

Linear step scan with up to 4 motors. Uses absolute coordinates and stays at last position.

dscan Linear step scan with up to 4 motors. Uses relative coordinates and returns to start.
cscan N dimensional fly scan based on absolute coordinates. These are start and go fly scans with optional velocity

setting. If the velocity control is set, motor velocities will be set based on the exposure time. Most motors
do not support velocity setting and others have severe restrictions (also in hardware).

tscan Scan without the motor movement. For defined time acquires data from sources.
mesh 2D scan based on absolute coordinates.
dmesh2D scan based on relative coordinates.
cus-
tom

Step scan uses absolute coordinates defined in the scanEnv.customScanPattern.

ex-
ter-
nal

Linear step scan with up to 4 motors. Uses externaly retrieved scan pattern

• At the moment, scans with up to 4 motors and 6 data sources are available.

• Based on the scan type start and stop positions of motors and the number of scan steps has to be provided.

• After moving motors to the start positions, they are locked by the scantool and unlocked at the end of the scan
or when the scan is paused.

• For details on how to use custom scans see: Custom Scan Patterns.

2.3 Acquisition Modes

For step scans acquistionMode property can be used to adjust the data acquisition mode:

• Single: Acquire data once after the acquisition time.

• Continuous: Continuous data acquisition during the acquisition time, excluding motor movement.

• Continuous Averaged: Average acquired data over the acquisition time.

• Continuous Extended: Continuous data acquisition during the acquisition time and motor movements.

Property is available as a combo box in the main scene.

2.2. Scans 9

Scantool, Release 1.0

2.4 Device Related Settings

Name Attribute De-
fault

Description

Use DAQ deviceEnv.useDaq False Use DAQ
Acquisition Time de-

viceEnv.acquisitionTime
0.1 sec Vector of acquisition times per step

Mottor settling
time

de-
viceEnv.motorSettlingTime

0.0 sec After motor movement wait this time before further ac-
tion

Configure Trig-
gers

de-
viceEnv.configureTriggers

False True: Triggers will configure the acquisition time

Configure Veloc-
ity

de-
viceEnv.configureVelocity

False Control motor velocity in cscan based on the acquisi-
tion time

Pipeline Wait deviceEnv.pipelineWait 1.5 Time for the pipeline data sources to wait for a new
value

Vector Data
range

de-
viceEnv.vectorDataRange

0 List of one or two integers define slice of vector data

Note:

• Acquisition time is taken into account if the configureTriggers is set to True.

• It is a vector of floats and should contain at least one value.

• If a single value is defined then this acquisition time will be used for all steps.

• Number of acquisition time values in the vector should be equal to the number of scan steps +1.

• If the number of values in the vector is less then number of steps + 1,

then missing values are equal to the last value of the vector.

2.5 Scan Environment Settings

Name Attribute Default Description
Comment scanEnv.comment “” Free form text to describe the executed scan.
Bidirectional scanEnv.bidirectional False Enable bidirectional (snake) mesh scan

2.6 Stopping Policy

The XFEL scantool comes with a defined stopping policy

• Absolute scans: The motors stay a final position.

• Relative scans: The motors will move back to start positions.

• Stopping scan: see absolute and relative scan behavior.

• Aborting scan: If a motor experiences an unexpected behavior during scan (e.g .error state), the scan will abort
and the motors won’t be moved any further.

10 Chapter 2. General Information

Scantool, Release 1.0

Note: A scan can be manually aborted and subsequently any post scan action (move back to start position) is not
executed.

2.6. Stopping Policy 11

Scantool, Release 1.0

12 Chapter 2. General Information

CHAPTER

THREE

HOW TO SETUP THE DAQ

The scantool is designed to control the DAQ system via a pre-configured DaqController device. This means it can start
and stop a run for a single scan as well as commit the currently selected DAQ configuration groups. Due to collisions,
Karabacon will not change the DAQ configuration!

ATTENTION: ALL the groups for your motors and data sources must be selected. Failing to do so means that your
data will not be recorded.

The DaqController can control a pre-configures DAQ. In case of DAQ configuration problems please proceed with
troubleshooting the DAQ manually.

Note: If a DAQ integration is not desired, the useDAQ boolean in the karabacon can be set to False before instantiation!

Note: The DAQ configuration must be done always before the scan configuration if activated. The general system
must be in a recordable state.

13

Scantool, Release 1.0

14 Chapter 3. How to setup the DAQ

CHAPTER

FOUR

THE GRAPHICAL USER INTERFACE (GUI)

Fig. 4.1: Main Karabacon scene.

Karabacon scene is devided in several areas:

• Device environment

• Scan settings

• Scan control (start, toggle scan, stop and abort), history table and logging

• Real-time and historical plots

15

Scantool, Release 1.0

4.1 Device environment

The device tree represents the scan tool device environment. A new device can be added by dragging a device name
from the system topology or project view to the tree view. If the device name is dropped on the top level item Motors,
Sources or Triggers then a new children entry is added. If it is dropped on the device item then the deviceId is updated.

Note: Device alias has to be unique and can contain letters a-z, A-Z, numbers: 0-9, and special characters: .-:/_.
White spaces are not allowed. Setting duplicated aliases will set the scantool to error state.

Fig. 4.2: Device environment tree and widgets to select device aliases.

After changing the device tree one has to click Apply button to approve the changes. Above the tree a toolbar with
buttons to add, sort, copy, move and delete devices is available. By clicking on the Add new devices a dialog to add
new devices is shown. The dialog lists all devices from the topology, allows filtering by text and allows to add devices
to the selected device group.

Fig. 4.3: Dialog allowing to add new devices to the device environment.

The dialog contains the following GUI components:

• List with available Karabo devices.

16 Chapter 4. The Graphical User Interface (GUI)

Scantool, Release 1.0

• Filter text field to filter available devices.

• Combo box to select device type and Axis/Property field to define the motor axis or source property.

• Table to define new custom motor interface.

To add a new device, select the device type (Motor, Source, or Trigger), then either double-click the device ID or click
the Add Device button. To add a custom motor, select the device ID, complete the necessary table fields, and click the
Add Custom Motor button

Tip: For a quick device selection type the requested aliases (comma separated and without whitespaces) in the text
fields of the currently selected aliases.

After all devices have been selected the device environment can be configured. Please click the Configure button
and the karabacon will establish the connection to all devices, check if they are in a proper condition and have been
configured properly with a correct axis. You only need to re-configure if you changed the device selection. Please note,
that configuring the DAQ might take over a minute!

4.2 Scan settings

If the configuration of the scan environment was successful, the isConfigured boolean is set to True and the applied
configuration is displayed in the status box. If the configuration is not successul, the status box will briefly describe
what happened wrong. After successful configuration the scans can be launched with the selected parameters and
settings.

Fig. 4.4: Scan settings.

Note: The Scan Environment has to be always configured when new devices are selected for the scan.

Note: The Scan Environment must not be configured for scan parameters (start, stop, steps etc.) only.

4.2. Scan settings 17

Scantool, Release 1.0

4.3 Scan control and history

The following scan control buttons are available:

• Start Scan: starts the configured scan.

• Toggle Scan: pauses or resumes the current scan.

• Stop Scan: stops the currently running scan.

• Abort: stops the currently running scan. The stop slot of motors and triggers is called.

• Clear History: clears the history table.

The history table keeps track of all executed scans. It is possible to plot scan results (Plot), repeate a scan (Repeate) and
configure the scantool based on the historical scan settings (Template). During a scan these commands are disabled.
The history table has a limited number of rows. You can adjust it by changing history.cacheSize.

Fig. 4.5: The scan history table with a scan being executed.

Fig. 4.6: Scan history with executed scans.

4.4 Real time and historical plots

The Karabo scan widget is a custom plot widget, for dedicated use with the scantool. Most importantly, it detects 1D
and 2D scans and adjusts it’s layout accordingly. It also offers basic analysis features, like selecting between multiple
datasource c hannel(s) and displayed axis coordinates.

Tip: Double clicking on the plot will move motor(s) to the corresponding position(s).

18 Chapter 4. The Graphical User Interface (GUI)

Scantool, Release 1.0

Fig. 4.7: One dimensional plot.

Fig. 4.8: Two dimensional plot.

4.4. Real time and historical plots 19

Scantool, Release 1.0

20 Chapter 4. The Graphical User Interface (GUI)

CHAPTER

FIVE

ADVANCED SETTINGS AND TOOLS

Fig. 5.1: Fig.: Advanced settings and tools.

21

Scantool, Release 1.0

5.1 Templates

Templates can be used to store and load named scantool configurations. The template widget contains a drop down
menu (combobox) with text completion containing all stored configurations, and buttons to store, remove, and load a
template. Each template is associated with a timestamp and loading a template requests a stored scantool configuration
at the associated timestamp. Pressing “Add” to an existing template overwrites its timestamp.

5.2 Logbook

Scantool allows sending scan reports to a logbook. In the topics where scantool is deployed a running Karabo LogBook
device needs to be present. In the Logbook section of the Advanced Setting dialog a table with available logbook
destinations is available.

• To retrieve destinations press Retrieve Destinations. Adding new destinations manually is not allowed and user
may enable or disable a destination or select a topic from available topics.

• Submit report button will send a report of the last scan to selected logbook destinations.

• By checking Automatically submit scan report to Logbook a report after each scan will be submitted.

• Pressing Log button in the scan history table will send a report of a corresponding scan.

5.3 Custom Scan Patterns

Custom scans are absolute scans based on user defined arbitrary motor positions defined in the sca-
nEnv.customScanPattern table. Table contains rows with vector double attributes indicating motor positions at each
step and can be defined:

• Manually by entering values in the table.

• By uploading a csv or numpy file by pressing Upload Scan Pattern button.

• By using a macro. For and example see: Macro to set custom scan pattern.

22 Chapter 5. Advanced Settings and Tools

CHAPTER

SIX

EXTENSIONS

Fig. 6.1: Fig.: Extension and additional tool widget in karabacon scene.

6.1 Data source normalizer

Extension is used to normalize data source values.

How to use the normalization

• Activate necessary data sources.

• Add normalization code.

• Activate necessary normalizations and configure Scantool.

• Start the scan.

Normalization coding guidlines

• Arithmetical operators: +, -, *, /, () and functions: sqrt, pow, exp, log, sin, asin, cos,
tan, atan are allowed.

• Do not use equal sign.

23

Scantool, Release 1.0

• Several alias are allowed in a single normalization code. For example, (source_alias1 + source_alias2)
/ 2 will average source values.

• Nested normalizations are not allowed.

Note:

• The amount of active normalizations will fill the same amount of output channels. For example, 3 active nor-
malizations will fill 3 output channels with normalized values.

• Configure the scan tool after changing the normalization environment.

6.2 Motor step transforms

Transfoms allowes to transform motor step values.

How to use the transforms

• Activate necessary motors.

• Add transforms code and configure the scan tool.

• If necessary preview the estimated positions.

• Start the scan.

Note:

• Configure the scan tool after changing the transforms environment.

6.3 Aligner

Extension allows to move motors to the positions that corresponds to the data source value at a certain characteristic:

• Minimum value

• Maximum value

• Center of mass

• Peak using L2 metric

• Valley: negative peak

• Step: center of gradients

All characteristics are evaluated at the end of the scan and displayed in the table element.

The table lists all characteristics, including data source value, motor position(s), summary information, and a button to
move motors. If a characteristic is not estimated then the move button is disabled and an error message is displayed in
the info field. To display aligner results on the plot, right click on the plot and select Request aligner results.

24 Chapter 6. Extensions

Scantool, Release 1.0

Fig. 6.2: Fig.: Aligner

6.3. Aligner 25

Scantool, Release 1.0

26 Chapter 6. Extensions

CHAPTER

SEVEN

THE COMMAND LINE INTERFACE (CLI)

The karabo scan device comes with a dedicated command line interface. Similar to ikarabo an IPython shell is launched.
In this python shell a scan client is created and registered on the broker to communicate with the desired scan device.

In order to connect to a scandevice, a SCANDEVICE variable has to be defined in the environment of the operating
system:

export SCANDEVICE=DEVICEID_SCANDEVICE

Once the scan device is exported, type karabacon and follow the initialization. The scan client is automatically updated
during a scan and retrieves the messages from the scanDevice. Hence, the configuration and scan messages in the
graphical user interface and the command line are identical.

Note: For any CLI command the brackets don’t have to be typed. The karabacon CLI is configured to use the IPython
autocall option, e.g. to view the data source environment:

sources() -> sources

In general, the command line interface follows spec syntax!

7.1 Configure the scan environment

Before a scan can be launched the scan environment has to be configured. This is required for the scan device to know
which triggers and data sources have to be considered (and plotted) in a scan. In addition, this information is provided
to the XFEL DAQ system for recording data. The actual configuration can be viewed by:

def status():
"""Retrieve the full status of the scan device

- Current configuration for motors, triggers and data sources
- State of the scan device

In general, the scan device knows the last active configuration and won’t perform a new configuration if the settings do
not change between scans.

Since the motor environment is most likely the device which change between scans, the motors are configured with the
scan function directly. The overview of the motor environment can be viewed by:

def motors():
"""Retrieve the full motor environment"""

27

Scantool, Release 1.0

7.1.1 Data sources

Data sources are most likely passive providers of data. The selected sources will be plotted by the scantool. Data
sources can be viewed and configured via:

def sources():
"""Show the available data sources environment of the scan device
"""

def add_sources(alias):
"""Add desired sources to the scan environment

:alias: Alias of the sources (string)
"""

def remove_sources(alias):
"""Remove desired sources from the scan environment

:alias: Alias of the sources (string)
"""

Note: The alias for data sources MUST NOT be unique. Hence multiple data can be configured at once.

7.1.2 Triggers

Triggers are active devices which are responsible for producing data. Triggers can be viewed and selected via:

def triggers():
"""Show the available trigger environment
"""

def add_trigger(alias: (str,)):
"""Add a single trigger to the active scan environment

:alias: Alias of the trigger
"""

def remove_trigger(alias: (str,)):
"""Remove a single trigger from the active scan environment

:alias: Alias of the trigger
"""

Note: The alias for triggers MUST be unique. The first trigger with found with given alias is taken.

28 Chapter 7. The Command Line Interface (CLI)

Scantool, Release 1.0

7.2 Launching scans

In general, the motors for a scan are always selected in the scan function. Simply provide a matching alias (string type)
of the motor environment. Absolute scans and relative scans are provided and follow the described stopping policy.

The following scan functions are provided in the command line interface

def ascan(axis, start, stop, steps, acqtime, wait)
"""Perform an absolute step scan with the scan device

:axis: alias(es) of the motor axis (str, list or tuple)
:start: start point(s) of the axis (int, float, list or tuple)
:stop: stop point(s) of the axis (int, float, list or tuple)
:steps: number of steps (int)
:acqtime: acquisition time per step (int, float)
:wait: Set to True to wait till scan ends

If the acquisition parameter is 0, the trigger devices
are not configured.

NOTE: After the scan, the motors stay a final position.
"""

def dscan(self, axis, start, stop, steps, acqtime, wait):
"""Perform a relative step scan with the scan device

:axis: alias(es) of the motor axis (str, list or tuple)
:start: start point(s) of the axis (int, float, list or tuple)
:stop: stop point(s) of the axis (int, float, list or tuple)
:steps: number of steps (int)
:acqtime: acquisition time per step (int, float)
:wait: Set to True to wait till scan ends

If the acquisition parameter is 0, the trigger devices
are not configured.

NOTE: After the scan, the motors will move back to start position.
"""

def cscan(self, axis, start, stop, steps, acqtime, wait):
"""Perform a continuous scan with the scan device

:axis: alias(es) of the motor axis (str, list or tuple)
:start: start point(s) of the axis (int, float, list or tuple)
:stop: stop point(s) of the axis (int, float, list or tuple)
:acqtime: acquisition time per step (int, float)
:wait: Set to True to wait till scan ends

If the acquisition parameter is 0, the trigger devices
are not configured.

NOTE: After the scan, the motors will move back to start position.
"""

(continues on next page)

7.2. Launching scans 29

Scantool, Release 1.0

(continued from previous page)

def tscan(self, acqtime, wait):
"""Perform a time scan with the scan device

:acqtime: acquisition time
:wait: Set to True to wait till scan ends
"""

def mesh(self, axis, start, stop, steps, acqtime, bidirectional=False, wait):
"""Perform an absolute mesh step scan with the scan device

:axis: aliases of the motor axis (list or tuple)
:start: start points of the axis (list or tuple)
:stop: stop points of the axis (list or tuple)
:steps: number of steps (list or tuple)
:acqtime: acquisition time per step
:bidirectional: Set to True for a snake scan
:wait: Set to True to wait till scan ends

This scan performs a mesh scan - Depending on the setting for
a *True* bidirectional input, the scan is performed as a snake scan.

If the acquisition parameter is 0, the trigger devices
are not configured.

NOTE: After the scan, the motors stay a final position.
"""

def dmesh(self, axis, start, stop, steps, acqtime, bidirectional=False, wait):
"""Perform a relative dmesh step scan with the scan device

:axis: aliases of the motor axis (list or tuple)
:start: start points of the axis (list or tuple)
:stop: stop points of the axis (list or tuple)
:steps: number of steps (list or tuple)
:acqtime: acquisition time per step
:bidirectional: Set to True for a snake scan
:wait: Set to True to wait till scan ends

This scan performs a dmesh scan - Depending on the setting for
a *True* bidirectional input, the scan is performed as a snake scan.

If the acquisition parameter is 0, the trigger devices
are not configured.

NOTE: After the scan, the motors will move back to start position.
"""

30 Chapter 7. The Command Line Interface (CLI)

Scantool, Release 1.0

7.3 Stopping Scans

Scans can be stopped or aborted. Aborting a scan means, that no motor will move back to start position (valid for
relative scans.):

def stop():
"""Stop a running scan from the scan device
"""

def abort():
"""Abort a running scan from the scan device
"""

7.3. Stopping Scans 31

Scantool, Release 1.0

32 Chapter 7. The Command Line Interface (CLI)

CHAPTER

EIGHT

MACROS

Karabo macros allows to extend the scantool functionality. In this chapter various macros to ease the user experience
are described.

8.1 Device provided macros

Scantool device, similarly to the device scenes, provides device macros. By right clicking on the device name and
selecting Open device macro a dialog with available macros is displayed. After choosing a macro name from the
Device Items list a new macro to the project will be added. This can be foreseen as a macro template and user can
adjust it to its needs. Currently following macros are available:

8.1.1 pause_scan_step

Macro allows to perform any available scan and perform actions after each step. Macro sets boolean pauseEachStep
of Scan environment to True, starts a scan and in the loop waits till scantool goes into PAUSE state. In the pause state
user may set attributes or call slots of other karabo devices and resume scan by calling pause slot of scan device.

###
Copyright (C) European XFEL GmbH Schenefeld. All rights reserved.
###
from karabacon.cli.scan_client import ScanClient
from karabacon.enums import ScanTypes
from karabo.middlelayer import (

Bool, Double, Overwrite, Slot, State, String, VectorDouble, VectorInt32,
VectorString, sleep, waitUntil)

class PauseScanStep(ScanClient):
"""This is an example scan to control the scantool

Use this macro to keep a static scan in your project
"""
scanDeviceId = Overwrite(

displayedName="Scantool Device",
defaultValue="__KARABO_BACON_DEVICE__")

scanType = String(
displayedName="Scan Type",
defaultValue=ScanTypes.ASCAN.value,
options=[i.value for i in ScanTypes])

(continues on next page)

33

Scantool, Release 1.0

(continued from previous page)

motors = VectorString(
displayedName="Motors",
description="Motor aliases to be used during ascan",
defaultValue=[])

sources = VectorString(
displayedName="Sources",
description="Aliases of the data sources during ascan",
defaultValue=[])

triggers = VectorString(
displayedName="Triggers",
description="Aliases of the trigger during ascan",
defaultValue=[])

startPositions = VectorDouble(
displayedName="Start positions",
defaultValue=[0.])

stopPositions = VectorDouble(
displayedName="Stop positions",
defaultValue=[10.])

steps = VectorInt32(
displayedName="Steps",
defaultValue=[10])

acqtime = Double(
defaultValue=0.,
displayedName="Acquisition Time")

bidirectional = Bool(
displayedName="Bidirectional",
defaultValue=False,
description="Set this value to true for a snake like mesh scan")

@Slot(displayedName="Start",
description="Start a scan",
allowedStates=[State.PASSIVE])

async def startScan(self):
""" Execute a scan with the configured properties

The scan can be cancelled!
"""

Connect to the scan device!
await self.connect()

if len(self.sources) > 0:
await self.select_sources(self.sources)

if len(self.triggers) > 0:
await self.select_triggers(self.triggers)

(continues on next page)

34 Chapter 8. Macros

Scantool, Release 1.0

(continued from previous page)

use self.scan_device to access scantool directly
self.scan_device.scanEnv.pauseEachStep = True

Do some actions before the scan

Start a scan
success, text = await self._start(

axis=self.motors, start=self.startPositions,
stop=self.stopPositions, steps=self.steps,
scantype=self.scanType, acqtime=self.acqtime,
bidirectional=self.bidirectional)

Get the message from the scan device and check if we scan
print(f"Scan device information: {text}")
if success:

Wait until the scan is done!
while self._is_scanning:

await waitUntil(
lambda: self.scan_device.state == State.PAUSED)

Do something after each step
print("Do something after each scan step")

await self.scan_device.pause()

Do some actions after the scan

Disconnect from the scan device after run!
self.disconnect()

@Slot(displayedName="Stop",
description="Stop scan",
allowedStates=[State.PASSIVE, State.ACTIVE])

async def stopAbsoluteScan(self):
Call the internal stop method!
await self.stop()

8.2 Other Macros

8.2.1 Macro to set custom scan pattern

from karabo.middlelayer import Macro, MacroSlot, Hash, setWait

class SetCustomScanPattern(Macro):

@MacroSlot()
def execute(self):

custom_pattern = []
(continues on next page)

8.2. Other Macros 35

Scantool, Release 1.0

(continued from previous page)

Add a row with two positions
custom_pattern.append(Hash("positions", [0.0, 0.0]))
Add 10 rows
for row in range(10):

custom_pattern.append(Hash("positions", [row, row * row]))

setWait("SCANTOOL/DEVICE/ID", "scanEnv.customScanPattern", custom_pattern)

36 Chapter 8. Macros

CHAPTER

NINE

KARABACON SCHEDULER

The Karabacon Scheduler is a middlelayer device to schedule and execute queued scans. This device has a scene
containing:

• A table to define the scans to be executed.

• Buttons to start and stop the scans in the queue and a button to reset errors.

• Plots.

• A table displaying the queue execution progress.

9.1 Scheduling Scans

The following rules are applied to the scheduler table:

• If in the row no scan parameters are provided then the current scantool settings are applied. In other words, the
last scan is repeated.

• The attribute Template defines a scantool template that will be loaded before the scan.

• The attribute Repeat Type together with Duration defines how the scans are repeated. Loop will repeate scans n
times where n is the Duration attribute. Time will execute scans for the time in seconds defined as Duration.

• Enabling Reverse Direction will swap the start and stop positions after each scan.

• If useDAQ is True then a DAQ run will be started before the first queue item and stopped after the last queue
item.

9.2 Executing Scans

Scans within one scheduled row are joined and plotted as a single scan. If the consecutive scan has the same scan
settings then the plot is not cleared and scan results are joined.

37

Scantool, Release 1.0

Fig. 9.1: The Karabacon Scheduler scene.

38 Chapter 9. Karabacon Scheduler

Scantool, Release 1.0

Fig. 9.2: Queue execution.

9.2. Executing Scans 39

Scantool, Release 1.0

40 Chapter 9. Karabacon Scheduler

CHAPTER

TEN

CHANGELOG

The Karabacon is continuously updated. The following versions are provided.

3.0.12

• Bugfix: Fixed failing mesh/dmesh scans when acquisition times vector is used.

• Bugfix: Set absolute motor coordinates for dmesh plots. Fixed issue where double-clicking the plot did not move
motors to the correct positions.

• Refactoring of extensions.

• Added extension to fit results.

• Added TangoMotor to supported motor interfaces.

3.0.11

• DaqController tag update

3.0.10

• BugFix: Fix KarabaconScheduler synchroniztion with Karabacon

3.0.9

• Added new string property acquisitionMode based on an enum to adjust the data acquisition during a scan.
Available acquisition modes: single: single data point after the end of a step, continues: acquire data during the
acquisition time. Multiple points during the step, continues averaged: acquire data during the acquisition time.
Average values and plot single data point. continues extended: acquire data during the acquisition time and time
when motors are moving.

• Log book integration allows to send scan reports to logbook.

• setup.py replaced with pyproject.toml.

• Fix: Added correct state handling if custom state is defined.

• Fix: Do not populate daq info of a scan history item if the useDAQ is false.

• PicoMotor added to the list of supported motors.

• Karabacon goes open source.

• Added attribute to define state changed timeout for motor environment.

• Fix: After the end of a scan wait till daqController goes to active state.

• New device KarabaconScheduler to schedule scans.

• Fix: Custom coordinate upload failed if the file contains a single row. Now its handled correctly.

• Fix: Pause after each step misbehaved.

41

Scantool, Release 1.0

• Disable log button of a history item if no logbook destinations are available.

• Fix cli and sync with main scantool device.

3.0.8

• BugFix: Do not move motors to start positions twice.

• Added boolean to allow shuffling of ascan steps

• Use common ci.

• Added state attribute of the custom motor interface.

• Align imports.

• Added sign function to allowed step functions.

• Removed tabulate dependency.

• Added device clones to the supported motor interfaces.

• Unlock motors if the scan is paused.

3.0.7-2.16.2

• DaqController tag update

3.0.6-2.16.2

• Added prefix (scan index in the scan history) to the source ids to allow displaying multiple plots in the gui.

• Added feature to allow uploading custom scan coordinates via uploader gui extension.

• Added comments and selected daq info (proposal num, run num, sample name, experiment) fields to the scan
history items.

• Spectrum scan checkbox allows to acquire and plot vector type data.

3.0.5-2.16.2

• Fixed bug in the scan history

3.0.4-2.16.2

• Do not reconfigure DAQ if its in monitoring state

3.0.3-2.16.2

• Fix: if step transform is used then instead of moving to the start position (value entered by the user and not
transformed) move to the transformed start position.

3.0.2-2.16.2

• Save scan history and data in xml and json files.

• Lock motors before scan and unlock after the scan.

• Add aligner results to the output schema

• CLI aligned to the latest version

• Raise KaraboError if device alias is not accepted

• New scan type: custom. Ascan with user defined customScanPattern

• 3.0.1-2.16.2

– Update DaqController to tag 1.5.1-2.16.2

• 3.0.0-2.16.2 (12/01/2023)

42 Chapter 10. ChangeLog

Scantool, Release 1.0

– New Feature: Scan templates. Allows to store scantool settings by name.

– Refactoring: Extensions moved to the extensions node.

– Refactoring: motorEnv, dataEnv, triggerEnv moved to devices node. Moved all device related settings to
the device node.

– Refactoring: Replace ascan, a2scan, a3scan, a4scan with ascan, cscan, c2scan, c3scan, c4scan with cscan
and dscan, d2scan, d3scan, d4scan with dscan. Scan settings are validated based on the number of motors.

– Added new targets table item to the Aligner extension to display estimated values and allow to move motors
to the corresponding position(s).

– Bugfix: Move conflicting motors (for example, MultiAxis motor) sequentially.

– New Feature: double click on the plot move motor(s) to the corresponding position(s).

• 2.4.14-2.13.4 (02/12/2022)

– New Feature: Added tscan: for defined time acquire data from sources without moving motors

– Repeating a scan from history sets all settings.

– Bugfix: Do not plot data points if device is in ERROR state or value is None

• 2.4.13-2.13.4 (10/10/2022)

– BugFix: fixed scene to be compatible with older Karabo versions.

• 2.4.12-2.13.4 (30/09/2022)

– Added device selection tree to the build-in scene.

– Added wait argument to the scan commands in cli.

– Allow to write activeMotors, activeSources and activeTriggers for fast device selection.

• 2.4.11-2.13.4 (19/08/2022)

– New Feature: Scan history table element stores information about executed scans. Contains buttons to
repeat scan and plot scan results.

– Added MonoChromator class to supported devices.

– Improved main scene and added new scene with extensions and additional tools.

– Added averaging of data source values.

– BugFix: Fixed failing step scans in case when averageValues is True and no data source is selected.

• 2.4.8-2.13.4 (21/04/2022)

– Staubli robot manipulator support.

– Added motorIds and sourceIds to the output schema.

– On initialization check if assigned device to daq controller has correct device class.

– Notify user and set isConfigured to false if the scan environment has been changed.

– Allow to enable/disable DAQ during the runtime.

• 1.6.0-2.6.0 (11/09/2019)

– Pause instead of aborting scan in case of errors on motors

• 1.5.0-2.6.0 (04/06/2019)

– Adapted DAQ integration to new DAQ state - PASSIVE

43

Scantool, Release 1.0

• 1.4.6-2.4.0 (28/05/2019)

– Added BeamPositionMonitor support

• 1.4.5-2.4.0 (14/05/2019)

– Added DoocsUndulatorEnergy and Monochromator support

• 1.4.4-2.4.0 (14/05/2019)

– Added Proxy Processor device

• 1.4.3-2.4.0 (07/05/2019)

– DoocsOpticalDelay support

• 1.4.1-2.4.0 (07/05/2019)

– Gridscanner support

• 1.3.19-2.4.0 (26/04/2019)

– Digitizer Processor support for roi integration and division

• 1.3.15-2.4.0 (29/03/2019)

– The Karabacon can optionally pause and wait at every scan step

• 1.3.14-2.3.6 (22/03/2019)

– Fix timestamp of actualStep on stable branch

• 1.3.13-2.3.6 (11/03/2019)

– update-simulatedTrigger-tag for stable branch

– Dont stop Karabacon when motor throws an exception !17

• 1.3.12-2.3 (17/12/2018)

– Fix generic average implementation

• 1.3.11-2.2.5 (24/10/2018)

– Add Image to spectrum !145

– Make the runConfigurationGroup property free-form !153

– Add Support for Pulse Picker Trigger!154

– Added imageProcessors parameters to environment !155

– Integration of DoocsPulseKicker device

– Fix a software limit switch !159

– genericaverage beamwidth !158

– genericAverage has nodes in interface !161

– compatible with new daq version !162

– Include reconfigurable delay for larger configurations

• 1.3.10-2.2.5 (27/09/2018)

– Split of development branch with master/stable, which got updated.

– Full implementation of absolute gscan: CLI and Karabacon !130

– First macro factory !132

44 Chapter 10. ChangeLog

Scantool, Release 1.0

– Update DAQ documentation !131

– Macro dscan !133

– Float to Doubles !134

– Provide isMoving isAcquiring booleans for daq !135

– Enable Schema plugin in Karabacon !136

– Support AGIPD in Karabacon !137

– Bulkset of tables in Karabacon !138

– Pipeline wait is configurable !139

– Pipelining proxies !141

– Karabacon can send now raw hash data !142

– Find generically outputchannel !143

– Cleaning of device proxy, trigger standard addition !144

– Clean a little bit the Schema proxy !147

– Add version history !148

– Allow MultiAxisMotor and Motor interface simultaneously !146

– Interface datasource implemented !149

– Mangle the schema in SchemaProxy !150

– Make the RunConfigurationGroup property freeform !151

– Timestamp fix in steps !160

• 1.3.9-2.2.4 (22/09/2018)

– Integration of DoocsPulseKicker device

• 1.3.8-2.2.4 (29/08/2018)

– Added imageProcessors parameters to environment

• 1.3.6-2.2.4 (10/08/2018)

– Add Support for Pulse Picker Trigger

• 1.3.5-2.2.4 (06/08/2018)

– Make the runConfigurationGroup property free-form

• 1.3.4-2.2.4 (03/07/2018)

– Addition of the ImageToSpectrum device

• 1.3.3-2.2.4 (20/06/2018)

– Karabacon is made compatible with the new MDL trainId integration

– The built-in TimeMiXin is removed and implemented in the framework

• 1.3.3-2.2.2 (08/03/2018)

– Support of doocsUndulator

• 1.3.2-2.2.2 (02/03/2018)

– Addition of a simulatedTrigger to work with Cameras.

45

Scantool, Release 1.0

• 1.3.1-2.2.2 (02/03/2018)

– More DAQ protection

– Scan configuration is checked, e.g. only done if the devices change. This is an essential performance fix.

– ikarabo namespace is added to karabacon (connectDevice, setWait . . .)

• 1.3.0-2.2.0 (28/02/2018)

– TrainId / Timeserver integration for output channel with TimeMiXin

– Alignment with the new DAQ Interface, configurable number of aggregators

• 1.2.1-2.2.0 (15/02/2018)

– Changed Karabacon device class from DeviceClientBase to Device

– Actively remove Quantity Input in ScanClient in several function

• 1.2.0-2.2.0 (05/02/2018)

The bacon comes alive! New release with major features and changes!

Features:

– Added full Command Line Interface Support (CLI) with spec pattern!

– Validation of input parameters in CLI

– Plotting from CLI with a scene runner

– Addition of ScanClient Macro which is later provided with Macro protocol

– Function added to retrieve descriptors for scalability

– A single plot scene added to the Karabacon Scan device

Devices:

• Abstract motor axis included considering KEP28

• Fixed state machine behavior for Triggers (ACTIVE/PASSIVE/ACQUIRING)

• Triggers must have specific state before start acquiring

• ACTIVE state (follow target) is supported in motors.

Testing:

• Multi-Axis Motor testing with motor mocks

• Data source and Trigger mocks with tests

This release will only work with device versions tagged against Karabo 2.2.0.

• 1.1.3-2.1.18.3 (29/11/2017)

– Bug fix for limit switches if the motor does not have one.

• 1.1.2-2.1.18.3 (27/11/2017)

– Refactor base proxy in scan device and remove internal axis from triggers

– CI Runner addition

– Implement code style checker

– Protection against concurrency access to DAQ - Check ACQUIRING state before configuring

• 1.1.1-2.1.18.3 (22/11/2017)

46 Chapter 10. ChangeLog

Scantool, Release 1.0

– New scan option!

– Implement dmesh feature

• 1.1.0-2.1.18.3 (22/11/2017)

– Major New Feature for accounting triggers

– Implement acquisition time feature

• 1.0.2-2.1.18.3 (16/11/2017)

– ScanDevice provides deviceId’s lookup when failing to connect

– Support Noded properties (Digitizer)

– Limit switch implementation

• 1.0.1-2.1.18.3 (10/11/2017)

– The eventloop gets more time to breathe to swallow all the events from the ScanDevice.

– More process Event calls

• 1.0.0-2.1.18.3 (9/11/2017)

– First version of scantool providing basic functionalities

– Scans: ascan (1-4), dscan (1-4), mesh

– Float plotting

– scene generation protocol

– beckhoff motor support

– greateyes support

– gotthard support

– lpd support

– imageprocessor, analoginput support

47

Scantool, Release 1.0

48 Chapter 10. ChangeLog

CHAPTER

ELEVEN

INDICES AND TABLES

• genindex

• modindex

• search

49

	Introduction
	Responsibilities and Limitations
	Troubleshooting

	Tips and tricks

	General Information
	Supported devices
	Motors
	Data sources
	Triggers

	Scans
	Acquisition Modes
	Device Related Settings
	Scan Environment Settings
	Stopping Policy

	How to setup the DAQ
	The Graphical User Interface (GUI)
	Device environment
	Scan settings
	Scan control and history
	Real time and historical plots

	Advanced Settings and Tools
	Templates
	Logbook
	Custom Scan Patterns

	Extensions
	Data source normalizer
	Motor step transforms
	Aligner

	The Command Line Interface (CLI)
	Configure the scan environment
	Data sources
	Triggers

	Launching scans
	Stopping Scans

	Macros
	Device provided macros
	pause_scan_step

	Other Macros
	Macro to set custom scan pattern

	Karabacon Scheduler
	Scheduling Scans
	Executing Scans

	ChangeLog
	Indices and tables

