TimeServer Documentation
Release 2.0

A. Beckmann and A. Parenti

Apr 30, 2025

Contents

1 Implementation Specification for TimeServer Device

1.1 ReVISIONS o o e e e e e e e e e e
1.2 Preface e e e e e e e e e
1.3 Introduction e e e e e e e e e
1.4 Architecture e e e e e e e
1.5 TimeServer Class o i i e e e e
1.6 Timer Class v o i e e e e e e e e e e e e e
1.7 Log@Ing o v o o e e e e e e e e e e e e
1.8 Integration into Karabo Devices e
1.9 TCP Server Protocol e e e e e
1.10 Abbreviations and aCronymso ittt e e e e e e e e e e e e e
I1.11 References o 0 i e e e

2 Train ID Workflow

3 Indices and tables

TimeServer Documentation, Release 2.0

Contents:

Contents 1

TimeServer Documentation, Release 2.0

2 Contents

CHAPTER 1

Implementation Specification for TimeServer Device

Authors A. Beckmann and A. Parenti, for the Control and Data Analysis Software Group

Version 2.0a, July 2016

1.1 Revisions

Ver- | Date Description
sion
1.0 20 Apr | Initial version
2015
1.0a 04 Jul | Fixed broken cross reference, added section on Karabo interface, added appendix for Karabo
2016 device integration and TCP protocol
2.0 20 Jul | Fixed FSM state names
2016
2.0a 25 Jul | Refined class descriptions
2016
1.2 Preface

This document provides details on the implementation of the Karabo device for providing trigger ID and time stamp
information to other devices.

This specification covers software release 2.0.

TimeServer Documentation, Release 2.0

1.3 Introduction

The TimeServer device provides trigger ID and time stamp for other Karabo devices, which are not capable of retriev-
ing this information directly from hardware. The information is sent out for each trigger via message broker.

The trigger ID is either read out from the XFEL timing system, generated internally, or received as a simple message
over TCP from another server.

1.3.1 System Context

The TimeServer device is operated in the context as shown in Fig. 1.1. It has an interface to the Karabo framework for
user control as well as to the XFEL Timing system and other TCP servers.

Karabo

TCP
Server

XFEL
Timing

Fig. 1.1: System context.

4 Chapter 1. Implementation Specification for TimeServer Device

TimeServer Documentation, Release 2.0

1.3.2 Data Model

For each trigger, a time tick is sent by the TimeServer device, containing ID, timestamp as seconds since UNIX epoch
and fractional seconds with attosecond resolution, and the averaged period in microsecond resolution.

The data model is depicted in Fig. 1.2.

ID

Seconds

TimeTick

Fractional

Period

Fig. 1.2: Data model.

1.4 Architecture

The TimeServer device is divided into several classes to improve testability, as explained in the following section.
Behavior is controlled by a finite state machine (FSM), which provides a set of methods to implement the desired
logic.

1.4.1 Class Diagram

Fig. 1.3 shows the top level class diagram of the TimeServer device. The main class is karabo::TimeServer, which
is derived from karabo::core::Device with the FSM template parameter bound to the karabo::core::BaseFsm state
machine class. It has an association with class xfel::timer:: Timer, which implements the core logic*’.

0 Classes used inside the TimeServer device are defined in namespace karabo, if they depend on resources from the Karabo framework, otherwise
they are defined in namespace xfel::timer.

1.4. Architecture 5

TimeServer Documentation, Release 2.0

karabo::core::Device

<<bind>>
< FSM -= karabo::core::BaseFsm =

karabo::TimeServer

xfel::timer::Timer

Fig. 1.3: Top level class diagram of TimeServer device.

6 Chapter 1. Implementation Specification for TimeServer Device

TimeServer Documentation, Release 2.0

1.4.2 State Machine

The state machine of the TimeServer device is depicted in Fig. 1.4.

errorFound

reset

ON

errorFound

Fig. 1.4: State machine of TimeServer device.

The initial state is the INIT state, in which the TimeServer device either starts a thread to generate internal time ticks,
or connects to XFEL timing system, or connects to a remote TCP server. Afterwards, the FSM changes into the ON
state, if there was no error during initialization.

In case of errors during initialization or at run time in ON state, the errorFound event is triggered and the FSM changes
into the UNKNOWN state. Triggering the reset event changes the FSM back into INIT state.

1.5 TimeServer Class

The class karabo::TimeServer is a thin layer on top of the xfel::timer::Timer class. It defines the methods that are
called from the Karabo framework, while it executes the FSM. These methods call methods from the Timer class for
further processing, and optionally convert data between the karabo::util::Hash representation, which is used inside
Karabo framework, and basic data types, which are used inside xfel::timer::Timer.

The TimeServer class also implements the ITimer interface, which is used by xfel::timer::Timer to provide the time
ticks.

1.5.1 Construction and Destruction

When the TimeServer device is created, it registers all slots and signals, and sets up the internal logging.

1.5.2 FSM Methods

For time consuming tasks, the FSM entry exit and action methods usually start worker threads to do the job in the
background. This enables the FSM to finish state transitions, so that the state is displayed correctly within the GUL.

1.5. TimeServer Class 7

TimeServer Documentation, Release 2.0

INIT State Entry

When entering the INIT state, the time source and period is set, and the TimerServer class sets itself as the class
implementing the ITimer interface. Finally, it initializes the Timer. Then the on event is triggered, so that the FSM
transits into the ON state.

In case of errors, the errorFound event is triggered to transit the FSM into the UNKNOWN state.

UNKNOWN State Entry

When entering the UNKNOWN state, the Timer is shut down.

1.5.3 Signals

The TimeServer device provides information by emitting the following signal
* signalTimeTick

It is described in the following section in more detail

signalTimeTick

The signal signalTimeTick is emitted each time, the trigger ID changes. It provides the following values:
e trigger ID,
* timestamp in seconds
* timestamp fraction in attoseconds
* average period in microseconds

All values are 64 bit integers. The timestamp is the time of the change of trigger ID in seconds since epoch (1.1.1970).
The fractional part is provided in attoseconds, the effective resolution is however depending on the selected ID source,
as described in Section xfel::timer::ITimer interface. The average period is the time difference between consecutive
ID changes, averaged over the last 100 changes.

1.5.4 Expected Parameters

The TimeServer device has a set of expected parameters, which are explained in more detail in the following sections.

source

The expected parameter with key ‘source’ defines the source for the trigger ID and timestamp. It is specified as a string
in URI syntax, as explained in Section /nitialization. This parameter can only be set before initialization.

id

The expected parameter with key ‘id’ is set with each change of the trigger ID, so that it always contains the latest
valid ID. This parameter is read only.

8 Chapter 1. Implementation Specification for TimeServer Device

TimeServer Documentation, Release 2.0

periodActual
The expected parameter with key ‘periodActual’ contains the actual average period. The period is calculated as the

difference of timestamps of two consecutive ID changes, and is displayed in milliseconds. The period is averaged over
the last 100 ID changes. This parameter is read only.

periodSet
The expected parameter with key ‘periodSet’ defines the setpoint for the period of the internal timing information

generation. It is a floating point number in milliseconds. A change of this value has immediate effect. However, due
to some filtering of the average (simple P type control loop), it takes some time to get to the new period.

1.6 Timer Class

The class xfel::timer::Timer is the top level class of the core logic, which is explained in more detail int the following
section. Main purpose of the Timer class is to send time ticks over the xfel::timer::ITimer interface.

1.6.1 Class Diagram

The class diagram of the core logic is depicted in Fig. 1.5. Application logic is contained in the xfel::timer::Model
class. The connection to remote TCP servers is implemented in class xfel::timer::TcpView according to the Model-
View-Presenter pattern, as described in'. Access to the XFEL timing system is provided by the interfacef’
xfel::timer::ISystem together with the implementation xfel::timer::System. ID and timing information is provided
via the interface xfel::timer::ITimer, which is implemented by karabo::TimeServer (the top level Karabo device class).

xfel::timer::Model

The class xfel::timer::Model implements the application logic of the time server. It configures the timing information
source, handles trigger ID and timestamp updates and provides the ID and timestamps via time ticks.

The xfel::timer:: Timer class interacts with the core logic only by calling public methods of the model.
xfel::timer::Presenter

The class xfel::timer::Presenter implements the behavior on the interface to remote TCP servers, such as opening and
closing a connection and acting on received data.

xfel::timer::TcpView

The class xfel::timer::TcpView interacts with the TCP stack to connect to remote TCP servers and to receive data. It
uses events towards the presenter to indicate the reception of new data and to indicate possible errors during listening.

1

M. Alles, D. Crosby, C. Erickson, B. Harleton, M. Marsiglia, G. Pattison, C. Stienstra, “Presenter First: Organizing Complex GUI Applications
for Test-Driven Development,” Agile 2006, Minneapolis, July 2006.

0 In C++, interfaces are abstract classes that contain only pure virtual methods.

1.6. Timer Class 9

TimeServer Documentation, Release 2.0

xfel::timer::Presenter

<<interface>> <<jnterface>>
xfel::timer::IModel xfel::timer:1View
xfel::timer::Model xfel::timer::TcpView

Q

.

<<interface>> <<interface>>
xfel::timer::ISystem xfel::timer::ITimer
xfel::timer::System karabo::TimeServer

Fig. 1.5: Class diagram of the TimeServer core logic.

10 Chapter 1. Implementation Specification for TimeServer Device

TimeServer Documentation, Release 2.0

xfel::timer::System

The xfel::timer::System class implements the interface xfel::timer::ISystem to give access to the XFEL timing system.

In order to get timing information from the XFEL timing system, the board need to be configured to raise an interrupt
SIGUSRI1 on a train ID change. This is done using the ioctl () system call on the device file of the timing board,
which is usually /dev/x2timersn, where n is the slot number of the board.

Warning: The ioctl () related structures and macros are defined by 2 files pciedev_io.h and
x1timer_io.h. which are part of the Linux kernel driver for the timing board. These files always need to
match the ones from the driver installed on the yTCA crate, where the TimeServer device is run.

1.6.2 Initialization
The steps performed during initialization depends on the selected timing source. The source is specified using the
generic URI syntax scheme:hierarchical_part. The following values are supported:
* local:internal for internally generated timing information,
* local:x2timer for XFEL timing, using a uTCA x2timer board
* tcp://<host :port> for timing from remote TCP servers.
If no scheme is specified, local is assumed.

For internally generated timing, a thread is created that simply counts upwards with the specified period. For XFEL
timing, an interrupt handler for STGUSRL1 is registered to read out timing information from the hardware. For timing
from remote TCP servers, a TCP channel is opened to the specified host.

After the device is initialized, it is no longer possible to switch the timing source.

The methods to initialize the core are listed in Table 1.1. Before starting operation, the methods setldSource(), set-
Timer(), and setPeriod() need to be called to inject the necessary run time parameters. Then initialize() is called to
actually start operation.

Table 1.1: Initialization methods

Method Description

setldSource(sourceUri) | sets the source of timing information (in URI form scheme:hierarchical_part)
setPeriod(period) sets the time period for internal timing

setTimer(timer) sets the receiver of the time tick (a class implementing the xfel::timer::ITimer interface)
initialize() starts operation according to specified source

1.6.3 Operation

Once the core is initialized, it automatically starts generating time ticks, which are provided over the
xfel::timer::ITimer interface. For the TimeServer device, the karabo:: TimeServer class itself implements this inter-
face, so that the ticks are available on Karabo level, where a tick is converted into a Karabo signal emitted to the
message broker.

xfel::timer::ITimer interface

The xfel::timer::ITimer interface defines one method tick(), with the trigger ID, timestamp as seconds and fractional
seconds, and period as parameters.

1.6. Timer Class 11

TimeServer Documentation, Release 2.0

The timestamp is the number of seconds since UNIX epoch, which is 1.1.1970 UTC. The fractional part of the times-
tamp is specified in attoseconds, however the resolution is depending on the selected ID source. If the ID is generated
by the XFEL timing system, then the associated timestamp is provided only with microseconds resolution. For all
other ID sources, the system call clock_gettime() is used, which returns a time with nanosecond resolution.

The period is specified in microseconds, and is the averaged time difference between consecutive trigger timestamps

1.6.4 Shutdown

The steps performed during shutdown depends on the specified timing source. For internal timing, the thread is
terminated. For XFEL timing, the signal handler for SIGUSRI is unregistered. For timing from remote TCP servers,
the TCP connection is closed.

The method to shut down the core is listed in Table 1.2.

Table 1.2: Shutdown method.

Method Description
shutdown() | stops operation according to specified source

1.7 Logging

Logging for other classes than those derived from the karabo::core::Device base class is provided by the Log class.
Macros simplify the process of creating log messages, and a handler needs to be installed, which will process the log
message

1.7.1 Macros

The Log class has an internal output stream, which can be filled using the macros
* LOG_ERROR
* LOG_WARN
* LOG_INFO
« LOG_DEBUG

as in the following example:

LOG_DEBUG << "some debug message";

The macro instantiates the Log class, fills the internal output stream, and finally destructs the Log class, which results
in calling the handler, if any was installed, with the string representation of the output stream.

1.7.2 Handler

In order to forward a log message from the Log class to the Karabo framework, the TimeServer installs a handler. The
handler is defined as:

void TimeServer::logEvent (int level, const charx message);

The handler is registered with the static method karabo::Log::setHandler(). Since it is a class method of the Time-
Server, the function pointer needs to be created using the templated method CreateMessageHandler():

12 Chapter 1. Implementation Specification for TimeServer Device

TimeServer Documentation, Release 2.0

xfel::timer::Log: :setHandler (
xfel::timer: :CreateMessageHandler<TimeServer> (
this, &TimeServer::logEvent
)
)i

1.8 Integration into Karabo Devices

The Karabo base device has been extended in order to make use of a TimeServer. It also requires a specific instance
name for the TimeServer device.

1.8.1 TimeServer Instantiation

If the TimeServer device is required as a source for train ID and timestamp, it needs to be initialized with a fixed
instance name Karabo_TimeServer.

1.8.2 Karabo Device Configuration

If a Karabo device is configured to use the TimeServer device, then it subscribes to the signal ‘signalTimeTick’ of the
device named ‘Karabo_TimeServer’. The associated slot saves this data locally and also calls a hook onTimeUpdate(),
which a derived Karabo device can override.

1.8.3 Calculating ID and Timestamp

When an expected parameter is set without using the timestamp argument, then the missing times-
tamp and train ID is calculated based on the values provided from the last TimeServer update (see
karabo::core::Device::getActual Timestamp()). First, the difference between the current time and the time of the last
train ID change is calculated. Then, the difference is compared with the period, and if the difference is larger (due to
missing TimeServer updates), then the train ID is interpolated based on the given average period.

1.9 TCP Server Protocol

The TCP server protocol uses simple ASCII string messages$”. The only information contained in a message is an
integer number specifying the trigger ID. On the TimeServer side, the function strtoull () is used to convert the
ASCII string into an integer for further processing.

Warning: The time stamp that is associated with the received train ID is the time, when the message was received.
This results in a slight inaccuracy, which depends on network latency.

0 It was used in a setup at Trieste Synchroton, where an AdgDigitizer and TimeServer device were run together. The TimeServer device received
bunch ID from the TANGO domain via a TCP server using this protocol.

1.8. Integration into Karabo Devices 13

TimeServer Documentation, Release 2.0

1.10 Abbreviations and acronyms

Core Main logic part of the TimeServer device

MVP Model-View-Presenter design pattern

Timing Delivers reference clock, trigger synchronous to a train of XFEL pulses, and ID of pulse train.

System

Trigger ID | The ID of the event that triggers activity. For XFEL, this ID is called Train ID, other facilities may
call this macro pulse or bunch ID.

1.11 References

14 Chapter 1. Implementation Specification for TimeServer Device

CHAPTER 2

Train ID Workflow

The workflow presented in Fig. 2.1 shows how the trainld information is provided to the karabo devices. The time-
server is a critical timing-reference for the devices which do not get the trainld from DESY accelerator machine

directly through the hardware
Fig. 2.1

TrainlD Workflow and Entities

1) The Machine is responsible for
providing the general timing

Devices registered to receive
timing information: epoch, trainiD,

If no epoch, devices get from the
local machine clock.

Every control server should be

synchronized using ntp server

Changes here must to be agreed

with ITDM, DET and CAS mainly,

From : device outputchannel
ex: cameras, detectors...

information and sync.
- " Sbech) period £
[iReaananedl = Wkl CEEEEEEEEEEH Trainld NS
i Period
" Timeserver
" Desy/Acc
i ! epoch
] Machine Trainld
] Period
i 2) The PLC/Beckhoffs are
] connected to the Machine.
! \ Therefore, they have to provide
ni the timing information
i /
| epoch h
' N N epoc
- —-Trainld > —»&);» Trainld
Period
epoch
1 Trainld
5 Period)
X, o, ——————-
! ety Information!
o Karabo devices have to
1 rely on the TIME
1 G SERVER info 6) Once the devices did not receive the
e s @2 timing information, they have to
20 o calculate it by themselves using the
Period] ée.;,,,e' Yeon, information from the timeserver
DoOCS erey, Also, they have to use the epoch to

4)DOOCS is connected to the -
Machine, so, it has to provide the
timing information

check if the trainlD is "behind" or
"further”.

MHz-Rate Detectors

Pipeline

WORKFLOW NOTES

i
1 device,

| the Karabo device has to forward this.

| 2)IfaKarabo device receives only epoch, the time server information is

| used to find the matching trainid.

1 3)If no time information is received from the hardware device, the epoch
} istaken

1 from the local system clock (which therefore needs proper ntp

| synchronisation). Then the time server info is again used to find the

| matching trainld.

1 6)can be understood as i also any epoch information coming from the

I the fime server s used as such - this should only used to extrapolate the
% trainld for a given epoch in 2) + 3) above.

1) If a Karabo device can receive epoch and trainld from some hardware

DAQ

_.......____........---......)

Fig. 2.1: Trainld Workflow and Entities.

Slowdata Sso
ex: beckhoff devices S~
Karabo Broker oy
~A
-
. hdf>
Fastdata T

15

TimeServer Documentation, Release 2.0

16 Chapter 2. Train ID Workflow

CHAPTER 3

Indices and tables

* genindex
* modindex

e search

17

	Implementation Specification for TimeServer Device
	Revisions
	Preface
	Introduction
	Architecture
	TimeServer Class
	Timer Class
	Logging
	Integration into Karabo Devices
	TCP Server Protocol
	Abbreviations and acronyms
	References

	Train ID Workflow
	Indices and tables

