[1]:
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
plt.rcParams['figure.constrained_layout.use'] = True

import dask
print(f'dask: {dask.__version__}')
import dask.array
dask.config.set({'array.chunk-size': '512MiB'})

import toolbox_scs as tb
print(tb.__file__)
import toolbox_scs.routines.boz as boz
dask: 2024.1.0
/gpfs/exfel/u/scratch/SCS/202430/p900411/checkouts/toolbox_p900411/src/toolbox_scs/__init__.py
[2]:
from psutil import virtual_memory

mem = virtual_memory()
print(f'Physical memory: {mem.total/1024/1024/1024:.0f} Gb')  # total physical memory available

import subprocess as sp
import os

def get_gpu_memory():
    command = "nvidia-smi --query-gpu=memory.free --format=csv"
    memory_free_info = sp.check_output(command.split()).decode('ascii').split('\n')[:-1][1:]
    memory_free_values = [int(x.split()[0])/1024 for i, x in enumerate(memory_free_info)]
    return memory_free_values

print(f'GPU memory: {get_gpu_memory()}Gb')
Physical memory: 252 Gb
GPU memory: [39.4228515625]Gb
[3]:
import sys
print(sys.executable)
/gpfs/exfel/exp/SCS/202430/p900411/scratch/envs/toolbox_p900411/bin/python
[4]:
%load_ext autoreload

%autoreload 2

Create parameters object

[5]:
exclude_trainId = None
proposal = 5746#900411

darkrun = 179
run = 180
exclude_trainId = 1996768679

# darkrun = 99
# run = 98

#darkrun = 92
#run = 93

module = 15
gain = 2
drop_intra_darks = False
sat_level = 400
rois_th = 0.07
ff_prod_th = 350
ff_ratio_th = 0.75
[6]:
params = boz.parameters(proposal=proposal, darkrun=darkrun, run=run, module=module, gain=gain, drop_intra_darks=drop_intra_darks)
[7]:
from extra_data.read_machinery import find_proposal

root = find_proposal(f'p{proposal:06d}')
path = root + f'/usr/processed_runs/r{params.run:04d}/'
print(path)
os.makedirs(path, exist_ok=True)
prefix = f'p{proposal}-r{run}-d{darkrun}-BOZ-Ia'
/gpfs/exfel/exp/SCS/202401/p005746/usr/processed_runs/r0180/
[8]:
print(params)
proposal:5746 darkrun:179 run:180 module:15 gain:2 ph/bin
drop intra darks:False
mask:None
rois threshold: None
rois: None
flat-field type: plane
flat-field p: None prod:(5.0, inf) ratio:(-inf, 1.2)
plane guess fit: None
use hexagons: False
enforce mirror symmetry: True
ff alpha: None, max. iter.: None
Fnl: None

Load data persistently

[9]:
#params.dask_load_persistently(0.3, 1.5)
params.dask_load_persistently(1, 4)

Slice the data by trainId if the number of pulses is large

[10]:
params.arr_dark
[10]:
Array Chunk
Bytes 1.00 GiB 500.50 MiB
Shape (45, 182, 128, 512) (22, 182, 128, 512)
Dask graph 3 chunks in 2 graph layers
Data type uint16 numpy.ndarray
45 1 512 128 182
[11]:
params.arr
[11]:
Array Chunk
Bytes 4.00 GiB 500.50 MiB
Shape (180, 182, 128, 512) (22, 182, 128, 512)
Dask graph 9 chunks in 2 graph layers
Data type uint16 numpy.ndarray
180 1 512 128 182
[12]:
if exclude_trainId is not None:
    idx = np.argwhere((params.tid - exclude_trainId) == 0)[0][0]
    print(idx)

    params.tid = params.tid[5:]
    params.arr = params.arr[5:]
4

Use GPU

[13]:
dask.config.set(scheduler="single-threaded")
params.use_gpu()

Dark run inspection

The aim is to check dark level and extract bad pixel map.

[14]:
dark = boz.average_module(params.arr_dark).compute()
[15]:
pedestal = boz.ensure_on_host(np.mean(dark))
pedestal
[15]:
array(65.97915385)
[16]:
#mean_th = (pedestal-12, pedestal+15)
mean_th = (pedestal-18, pedestal+22) #2.25MHz
f = boz.inspect_dark(boz.ensure_on_host(params.arr_dark),
                     mean_th=mean_th)
f.suptitle(f'p:{params.proposal} d:{params.darkrun}')
fname = path + prefix + '-inspect_dark.png'
f.savefig(fname, dpi=300)
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_21_0.png
[17]:
params.mean_th = mean_th
params.set_mask(boz.bad_pixel_map(params))
# bad pixel: 18
[18]:
print(params)
proposal:5746 darkrun:179 run:180 module:15 gain:2 ph/bin
drop intra darks:False
mean threshold:(47.979153846675516, 87.97915384667552) std threshold:(None, None)
mask:(#18) [[0, 345], [14, 412], [15, 437], [23, 503], [36, 477], [43, 506], [71, 451], [76, 302], [80, 223], [80, 224], [87, 355], [106, 332], [108, 185], [110, 390], [115, 169], [120, 339], [124, 350], [125, 296]]
rois threshold: None
rois: None
flat-field type: plane
flat-field p: None prod:(5.0, inf) ratio:(-inf, 1.2)
plane guess fit: None
use hexagons: False
enforce mirror symmetry: True
ff alpha: None, max. iter.: None
Fnl: None

Veto pattern check

Check potential veto pattern issue

[19]:
data = boz.average_module(params.arr, dark=dark).compute()
pp = boz.ensure_on_host(data.mean(axis=(1,2))) # pulseId resolved mean
dataM = boz.ensure_on_host(data.mean(axis=0)) # mean over pulseId
[20]:
plt.figure()
plt.plot(pp)
plt.xlabel('pulseId')
plt.ylabel('dark corrected module mean')
plt.title(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
plt.savefig(path+prefix+'-veto_inspect.png', dpi=300)
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_27_0.png
[21]:
# Thresholding out bad veto pulse
"""
threshold = 5
if False:
    params.arr = params.arr[:, pp > threshold, :, :]
    params.arr_dark = params.arr_dark[:, pp > threshold, :, :]
    dark = boz.average_module(params.arr_dark).compute()
    data = boz.average_module(params.arr, dark=dark).compute()
    dataM = data.mean(axis=0) # mean over pulseId
"""
[21]:
'\nthreshold = 5\nif False:\n    params.arr = params.arr[:, pp > threshold, :, :]\n    params.arr_dark = params.arr_dark[:, pp > threshold, :, :]\n    dark = boz.average_module(params.arr_dark).compute()\n    data = boz.average_module(params.arr, dark=dark).compute()\n    dataM = data.mean(axis=0) # mean over pulseId\n'

Histogram

[22]:
h, f = boz.inspect_histogram(boz.ensure_on_host(params.arr),
                             boz.ensure_on_host(params.arr_dark),
                             mask=boz.ensure_on_host(params.get_mask())
                             #, extra_lines=True
                         )
f.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
f.savefig(path+prefix+'-histogram.png', dpi=300)
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_30_0.png

ROIs extraction

[23]:
params.rois_th = rois_th
params.rois = boz.find_rois_from_params(params)
[24]:
print(params)
proposal:5746 darkrun:179 run:180 module:15 gain:2 ph/bin
drop intra darks:False
mean threshold:(47.979153846675516, 87.97915384667552) std threshold:(None, None)
mask:(#18) [[0, 345], [14, 412], [15, 437], [23, 503], [36, 477], [43, 506], [71, 451], [76, 302], [80, 223], [80, 224], [87, 355], [106, 332], [108, 185], [110, 390], [115, 169], [120, 339], [124, 350], [125, 296]]
rois threshold: 0.07
rois: {'n': {'xl': 44, 'xh': 95, 'yl': 40, 'yh': 91}, '0': {'xl': 96, 'xh': 137, 'yl': 40, 'yh': 91}, 'p': {'xl': 215, 'xh': 220, 'yl': 40, 'yh': 91}, 'sat': {'xl': 44, 'xh': 220, 'yl': 40, 'yh': 91}}
flat-field type: plane
flat-field p: None prod:(5.0, inf) ratio:(-inf, 1.2)
plane guess fit: None
use hexagons: False
enforce mirror symmetry: True
ff alpha: None, max. iter.: None
Fnl: None
[25]:
#clip ROIs to check if beam clipping occurs
#for beam in ['n', '0', 'p']:
#    params.rois[beam]['xl'] += 15
#    params.rois[beam]['xh'] -= 15
#    params.rois[beam]['yl'] += 15
#    params.rois[beam]['yh'] -= 15
[26]:
#w = params.rois['0']['xh'] - params.rois['0']['xl']
#params.rois['n']['xl'] = params.rois['n']['xh'] - w
#params.rois['p']['xh'] = params.rois['p']['xl'] + w

# full ROIs
for r in ['n', 'p', '0', 'sat']:
    params.rois[r]['yl'] = 58
    params.rois[r]['yh'] = 94

## Reduced ROIs vertically
#for r in ['n', 'p', '0', 'sat']:
#    params.rois[r]['yl'] = 58+10
#    params.rois[r]['yh'] = 94-2

params.rois['sat']['xl'] = 25
params.rois['n']['xl'] = 27
params.rois['n']['xh'] = 98
params.rois['0']['xl'] = 98
params.rois['0']['xh'] = 169
params.rois['p']['xl'] = 169
params.rois['p']['xh'] = 240
params.rois['sat']['xh'] = 242
[27]:
for r in ['n', 'p', '0', 'sat']:
    b = params.rois[r]
    print(f"{r}: {b['xh'] - b['xl']}")
n: 71
p: 71
0: 71
sat: 217
[28]:
f = boz.inspect_rois(dataM, params.rois, params.rois_th)
f.savefig(path+prefix+f'-rois.png', dpi=300)
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_37_0.png

Flat field extraction

[29]:
fig = boz.initialize_polyline_ff_correction(dataM, params.rois, params, plot=True)
fig.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
fig.savefig(path+prefix+f'-polyline-projection.png', dpi=300)
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_39_0.png
[30]:
params.get_flat_field()
[30]:
array([-1.70374285e-03,  3.50954400e-02, -2.82524014e-01,  1.12323395e+00,
       -2.21253039e+00,  1.72226687e+00,  3.95017009e-01, -1.91426059e-02,
        1.64863178e-01, -5.20786105e-01,  7.00215032e-01, -2.25119198e-01,
       -3.39737253e-01,  1.24067098e+00])
[31]:
ff = boz.compute_flat_field_correction(params.rois, params)
plt.figure(figsize=(6,2))
plt.imshow(ff)
plt.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
plt.savefig(path+prefix+f'-polynorm-ff.png', dpi=300)
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_41_0.png
[32]:
f = boz.inspect_ff_fitting_sk(boz.ensure_on_host(dataM), params.rois, ff)
plt.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
[32]:
Text(0.5, 0.98, 'p:5746 r:180 d:179')
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_42_1.png

The first step is to compute a good average image, this mean remove saturated shots and ignoring bad pixels

[33]:
params.sat_level = sat_level
res = boz.average_module(params.arr, dark=dark,
                         ret='mean', mask=params.get_mask(), sat_roi=params.rois['sat'],
                         sat_level=params.sat_level)
avg = res.mean(axis=0).compute()

The second step is from that good average image to fit the plane field on n/0 and p/0 rois. We have to make sure that the rois have same width.

[34]:
# default values
params.flat_field_prod_th = (5.0, np.PINF)
params.flat_field_ratio_th = (np.NINF, 1.2)
params.use_hex = False
params.force_mirror = False
params.ff_alpha = 0.1
params.ff_max_iter = 25

print(params)
proposal:5746 darkrun:179 run:180 module:15 gain:2 ph/bin
drop intra darks:False
mean threshold:(47.979153846675516, 87.97915384667552) std threshold:(None, None)
mask:(#18) [[0, 345], [14, 412], [15, 437], [23, 503], [36, 477], [43, 506], [71, 451], [76, 302], [80, 223], [80, 224], [87, 355], [106, 332], [108, 185], [110, 390], [115, 169], [120, 339], [124, 350], [125, 296]]
rois threshold: 0.07
rois: {'n': {'xl': 27, 'xh': 98, 'yl': 58, 'yh': 94}, '0': {'xl': 98, 'xh': 169, 'yl': 58, 'yh': 94}, 'p': {'xl': 169, 'xh': 240, 'yl': 58, 'yh': 94}, 'sat': {'xl': 25, 'xh': 242, 'yl': 58, 'yh': 94}}
flat-field type: polyline
flat-field p: [-0.0017037428505442531, 0.03509543996950445, -0.28252401358896434, 1.1232339460395468, -2.212530386376008, 1.7222668684623201, 0.395017008970426, -0.019142605916517917, 0.16486317776186016, -0.5207861049014739, 0.7002150319121965, -0.22511919830619642, -0.339737252631951, 1.2406709775853386] prod:(5.0, inf) ratio:(-inf, 1.2)
plane guess fit: None
use hexagons: False
enforce mirror symmetry: False
ff alpha: 0.1, max. iter.: 25
Fnl: None
[35]:
#params.set_flat_field([0, 0, 1, -1, 0, 0, 1, -1])
params.set_Fnl(np.arange(2**9))
params.save(path=path)
/gpfs/exfel/exp/SCS/202401/p005746/usr/processed_runs/r0180/parameters_p5746_d179_r180.json

Refining flat field

[36]:
print(params)
proposal:5746 darkrun:179 run:180 module:15 gain:2 ph/bin
drop intra darks:False
mean threshold:(47.979153846675516, 87.97915384667552) std threshold:(None, None)
mask:(#18) [[0, 345], [14, 412], [15, 437], [23, 503], [36, 477], [43, 506], [71, 451], [76, 302], [80, 223], [80, 224], [87, 355], [106, 332], [108, 185], [110, 390], [115, 169], [120, 339], [124, 350], [125, 296]]
rois threshold: 0.07
rois: {'n': {'xl': 27, 'xh': 98, 'yl': 58, 'yh': 94}, '0': {'xl': 98, 'xh': 169, 'yl': 58, 'yh': 94}, 'p': {'xl': 169, 'xh': 240, 'yl': 58, 'yh': 94}, 'sat': {'xl': 25, 'xh': 242, 'yl': 58, 'yh': 94}}
flat-field type: polyline
flat-field p: [-0.0017037428505442531, 0.03509543996950445, -0.28252401358896434, 1.1232339460395468, -2.212530386376008, 1.7222668684623201, 0.395017008970426, -0.019142605916517917, 0.16486317776186016, -0.5207861049014739, 0.7002150319121965, -0.22511919830619642, -0.339737252631951, 1.2406709775853386] prod:(5.0, inf) ratio:(-inf, 1.2)
plane guess fit: None
use hexagons: False
enforce mirror symmetry: False
ff alpha: 0.1, max. iter.: 25
dFnl: [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0]
nl alpha:None, sat. level:400,  nl max. iter.:None
[37]:
params.get_flat_field()
[37]:
array([-1.70374285e-03,  3.50954400e-02, -2.82524014e-01,  1.12323395e+00,
       -2.21253039e+00,  1.72226687e+00,  3.95017009e-01, -1.91426059e-02,
        1.64863178e-01, -5.20786105e-01,  7.00215032e-01, -2.25119198e-01,
       -3.39737253e-01,  1.24067098e+00])
[38]:
res, cb = boz.ff_refine_fit(params, boz.ff_refine_crit_sk)
0: 0:00:00.000001 (reg. term: 0.6364482075197957, 28.517923869619498, err. term: 279.45120482851684), [-1.70374285e-03  3.50954400e-02 -2.82524014e-01  1.12323395e+00
 -2.21253039e+00  1.72226687e+00  3.95017009e-01 -1.91426059e-02
  1.64863178e-01 -5.20786105e-01  7.00215032e-01 -2.25119198e-01
 -3.39737253e-01  1.24067098e+00]
1: 0:00:13.736765 (reg. term: 1.252209175122964, 28.42354119673923, err. term: 272.9655293912856), [-1.70293142e-03  3.50954957e-02 -2.82524025e-01  1.12323394e+00
 -2.21253039e+00  1.72226687e+00  3.95017009e-01 -1.91426853e-02
  1.64863149e-01 -5.20786116e-01  7.00215028e-01 -2.25119200e-01
 -3.39737253e-01  1.24067098e+00]
2: 0:00:22.125090 (reg. term: 0.4000252429867073, 24.863626611001113, err. term: 245.03603892313075), [-1.69573110e-03  3.50593026e-02 -2.82539771e-01  1.12322866e+00
 -2.21253204e+00  1.72226635e+00  3.95016844e-01 -1.91764719e-02
  1.64850811e-01 -5.20790674e-01  7.00213328e-01 -2.25119834e-01
 -3.39737481e-01  1.24067091e+00]
3: 0:00:43.677152 (reg. term: 0.37555832411153306, 24.855458485005958, err. term: 245.17455993305578), [-1.69444358e-03  3.50525028e-02 -2.82542279e-01  1.12322843e+00
 -2.21253174e+00  1.72226667e+00  3.95017103e-01 -1.91696168e-02
  1.64853889e-01 -5.20789160e-01  7.00214123e-01 -2.25119391e-01
 -3.39737217e-01  1.24067109e+00]
4: 0:00:52.010647 (reg. term: 0.42002020004675256, 24.482172930963618, err. term: 241.0415475092154), [-1.67431430e-03  3.48900321e-02 -2.82382805e-01  1.12372610e+00
 -2.21209310e+00  1.72257453e+00  3.95239588e-01 -1.94244447e-02
  1.65276625e-01 -5.20300692e-01  7.00599401e-01 -2.24846304e-01
 -3.39544920e-01  1.24081762e+00]
5: 0:01:03.044452 (reg. term: 0.3733887256227685, 24.374226257825843, err. term: 240.3817640476535), [-1.68894740e-03  3.50497446e-02 -2.82830549e-01  1.12378698e+00
 -2.21186866e+00  1.72278522e+00  3.95416101e-01 -1.96273671e-02
  1.65624211e-01 -5.19869989e-01  7.00946935e-01 -2.24600381e-01
 -3.39374858e-01  1.24094345e+00]
6: 0:01:08.886687 (reg. term: 0.4431184041227194, 23.743329755599316, err. term: 233.44523191888865), [-1.78795052e-03  3.62276221e-02 -2.86752651e-01  1.12572587e+00
 -2.20852114e+00  1.72563339e+00  3.97697674e-01 -1.91691508e-02
  1.63630215e-01 -5.19035465e-01  7.02986313e-01 -2.22497619e-01
 -3.37539914e-01  1.24261503e+00]
Warning: Desired error not necessarily achieved due to precision loss.
         Current function value: 23.743330
         Iterations: 6
         Function evaluations: 941
         Gradient evaluations: 62
[39]:
res.x
[39]:
array([-1.78795052e-03,  3.62276221e-02, -2.86752651e-01,  1.12572587e+00,
       -2.20852114e+00,  1.72563339e+00,  3.97697674e-01, -1.91691508e-02,
        1.63630215e-01, -5.19035465e-01,  7.02986313e-01, -2.22497619e-01,
       -3.37539914e-01,  1.24261503e+00])
[40]:
params.set_flat_field(res.x, params.ff_type)
ff = boz.compute_flat_field_correction(params.rois, params)
f = boz.inspect_ff_fitting_sk(boz.ensure_on_host(avg), params.rois, ff)
f.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
f.savefig(path+prefix+'-inspect-withflatfield-refined.png', dpi=300)
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_53_0.png

Non-linearities correction extraction

To speed up online analysis, we save the corrections with a dummy non-linearity correction. The saved file can be used for online analysis as soon as it appears.

[41]:
params.set_Fnl(np.arange(2**9))
params.save(path=path)
/gpfs/exfel/exp/SCS/202401/p005746/usr/processed_runs/r0180/parameters_p5746_d179_r180.json
[42]:
N = 80
domain = boz.nl_domain(N, 40, 511)
params.nl_alpha = 0.5
params.nl_max_iter = 25

minimizing

[43]:
res, fit_res = boz.nl_fit(params, domain, ff, boz.nl_crit_sk)
0: 0:00:00.000001 (4102.644512978777, 2051.3222564893886, 0.0), [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 0 0 0 0 0 0]
1: 0:00:35.919397 (3024.422254096365, 1515.2429208009826, 6.0635875055999096), [ 8.20818406e-04 -2.22427901e-03  1.12560650e-02  4.26314485e-01
  1.91982766e-01 -6.51932016e-01 -4.92832091e-01 -2.25197092e-01
 -4.16688559e-02  8.24781353e-02  1.08187158e-01  1.05635840e-01
  1.08725626e-01  9.70301513e-02  7.22590385e-02  6.98605750e-02
  7.26550004e-02  5.56072777e-02  5.71656497e-02  4.41775122e-02
  4.28982833e-02  2.86748488e-02  2.47899322e-02  1.99975738e-02
  1.34507838e-02  7.46433724e-03  1.69422196e-03 -1.97672339e-03
 -6.85128764e-03 -6.51311493e-03 -9.90331370e-03 -1.34835209e-02
 -1.25454600e-02 -1.58488540e-02 -1.38353089e-02 -1.60964096e-02
 -1.26775280e-02 -1.42788334e-02 -1.24303355e-02 -1.41203518e-02
 -1.12332822e-02 -1.02904408e-02 -8.98721876e-03 -6.83098578e-03
 -8.15121178e-03 -6.15279475e-03 -6.03567329e-03 -4.31839616e-03
 -4.09105164e-03 -2.87399903e-03 -2.31102331e-03 -1.81639619e-03
 -1.23783857e-03 -9.57878651e-04 -6.75498239e-04 -4.33872828e-04
 -2.52789922e-04 -1.42597116e-04 -6.94680622e-05 -4.70482739e-05
 -2.19054343e-05 -4.20560133e-06  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
2: 0:01:11.922271 (2951.5914249219068, 1479.9699150856686, 8.348405249430566), [ 4.20407814e-04 -1.24525197e-03 -3.40025774e-03  3.65058406e-01
  3.67436297e-01 -4.58595556e-01 -6.88215707e-01 -5.04134843e-01
 -2.17807613e-01  1.16743896e-02  8.34863251e-02  9.20705859e-02
  9.98902063e-02  9.43039059e-02  7.71097952e-02  9.32920073e-02
  1.23336920e-01  1.14203185e-01  1.39427947e-01  1.26056210e-01
  1.38443195e-01  1.02912117e-01  9.76730830e-02  8.88692566e-02
  7.07105742e-02  5.34829481e-02  3.13763445e-02  1.66109935e-02
  3.40569824e-03 -4.95102706e-03 -1.32780360e-02 -2.38235815e-02
 -2.49476379e-02 -3.49916092e-02 -3.19707226e-02 -3.88574590e-02
 -3.15425505e-02 -3.61530547e-02 -3.16740309e-02 -3.72261120e-02
 -2.97890892e-02 -2.76291646e-02 -2.41015598e-02 -1.87457638e-02
 -2.23906155e-02 -1.70052955e-02 -1.66731336e-02 -1.19563451e-02
 -1.11328659e-02 -7.79926430e-03 -6.22555026e-03 -4.87439505e-03
 -3.19593697e-03 -2.42817909e-03 -1.77750092e-03 -1.11656247e-03
 -7.08162115e-04 -4.05929672e-04 -2.16943015e-04 -1.36163077e-04
 -7.34748142e-05 -1.37630790e-05  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
3: 0:01:30.272528 (2875.043003573174, 1448.9030662133719, 22.763128853569917), [ 1.89776192e-05  1.98744663e-03 -9.81582399e-02 -1.96119904e-01
  2.80164994e-01 -4.91195561e-01 -1.13650524e+00 -6.98613060e-01
  4.81986529e-02  3.21915547e-01  1.64826211e-01  1.00570959e-02
 -8.95536602e-02 -1.39139898e-01 -1.11317387e-01 -1.24879382e-02
  1.37196591e-01  2.27602566e-01  3.76629802e-01  4.17562566e-01
  5.14783425e-01  4.16058279e-01  4.18491177e-01  4.04744710e-01
  3.43727877e-01  2.82417727e-01  1.85096218e-01  1.19287104e-01
  6.98489397e-02  1.47710040e-02 -1.38521623e-02 -5.63247456e-02
 -7.01902182e-02 -1.11823417e-01 -1.06737178e-01 -1.35286672e-01
 -1.13264469e-01 -1.31316835e-01 -1.15229103e-01 -1.39885967e-01
 -1.12440515e-01 -1.05351274e-01 -9.16657307e-02 -7.31195629e-02
 -8.69659222e-02 -6.64276790e-02 -6.49633412e-02 -4.66760933e-02
 -4.27169060e-02 -2.98271963e-02 -2.36272841e-02 -1.83818984e-02
 -1.15513028e-02 -8.58192191e-03 -6.52257540e-03 -4.01266058e-03
 -2.74961480e-03 -1.58273278e-03 -9.18219874e-04 -5.22045173e-04
 -3.20469942e-04 -5.68427613e-05  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
4: 0:01:48.623742 (2768.1410587644536, 1415.9242980924878, 63.707537420521845), [ 2.35149356e-04  3.42928585e-03 -2.46350784e-01 -9.34738006e-01
 -3.40361763e-01 -9.43576953e-01 -1.16516947e+00 -7.61359243e-01
 -1.98936170e-01  4.49830940e-02  6.95221720e-02  5.75218366e-02
  5.27639944e-02 -6.06629930e-03 -5.75882109e-02  1.06428697e-01
  3.51734169e-01  4.68706168e-01  7.40930180e-01  8.30927938e-01
  1.03390370e+00  8.55190049e-01  8.64362628e-01  8.50657061e-01
  7.36713858e-01  6.19535926e-01  4.12206802e-01  2.75055399e-01
  1.70087610e-01  4.59158797e-02 -1.33235761e-02 -1.06738356e-01
 -1.40682706e-01 -2.35060564e-01 -2.27435764e-01 -2.93138886e-01
 -2.51028620e-01 -2.89992837e-01 -2.54784212e-01 -3.14693891e-01
 -2.54061964e-01 -2.39863767e-01 -2.09201298e-01 -1.70511295e-01
 -2.01361270e-01 -1.54638199e-01 -1.51601190e-01 -1.09496978e-01
 -9.99093322e-02 -6.98804096e-02 -5.58956040e-02 -4.31811807e-02
 -2.68448905e-02 -1.98449881e-02 -1.52848077e-02 -9.35980591e-03
 -6.55753963e-03 -3.76503321e-03 -2.25264811e-03 -1.23471265e-03
 -7.81999908e-04 -1.33244991e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
5: 0:02:24.649184 (2709.145944313761, 1402.425063056577, 95.70418179939297), [-3.58498648e-04  4.54786763e-03 -3.28665694e-01 -1.43529229e+00
 -8.08019861e-01 -1.03821265e+00 -1.30810083e+00 -9.45970893e-01
 -3.25916497e-01  9.03192518e-02  2.55397492e-01  3.12067425e-01
  3.47627407e-01  2.19977769e-01  3.31562335e-02  1.73500854e-01
  3.96347579e-01  4.90917674e-01  7.80030950e-01  9.09834451e-01
  1.15594421e+00  9.87706986e-01  1.00376950e+00  1.00745851e+00
  8.91329195e-01  7.67184373e-01  5.20584824e-01  3.59575635e-01
  2.36589688e-01  7.79192140e-02  9.78465177e-03 -1.04197669e-01
 -1.51640767e-01 -2.69900505e-01 -2.66580574e-01 -3.50596805e-01
 -3.08180574e-01 -3.54805871e-01 -3.13178127e-01 -3.93036124e-01
 -3.19054849e-01 -3.03727921e-01 -2.66037645e-01 -2.21311396e-01
 -2.59650399e-01 -2.00465492e-01 -1.97444624e-01 -1.43354909e-01
 -1.30976428e-01 -9.19311886e-02 -7.45314686e-02 -5.72208184e-02
 -3.55364918e-02 -2.63032965e-02 -2.03922067e-02 -1.25010403e-02
 -8.81498393e-03 -5.06248843e-03 -3.07636034e-03 -1.66554112e-03
 -1.05945657e-03 -1.77632440e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
6: 0:03:00.698458 (2694.5312070641858, 1399.6860791886834, 104.84095131318101), [-1.91363131e-03  3.60905468e-03 -3.46668869e-01 -1.51608317e+00
 -9.84006044e-01 -9.87304695e-01 -1.52902575e+00 -9.32343948e-01
 -1.99942543e-01  2.47432111e-02  1.08785630e-01  2.39463119e-01
  3.95976045e-01  3.54366306e-01  1.51558364e-01  2.91760916e-01
  4.82002308e-01  5.06034024e-01  7.49402999e-01  8.74268723e-01
  1.11223131e+00  9.94874864e-01  9.95088014e-01  1.02450580e+00
  9.34956983e-01  8.33831597e-01  5.87862412e-01  4.30052556e-01
  3.15178135e-01  1.34688470e-01  7.16324629e-02 -4.39745841e-02
 -1.08025359e-01 -2.34047108e-01 -2.46411958e-01 -3.40737529e-01
 -3.20207171e-01 -3.64819887e-01 -3.27443374e-01 -4.23309349e-01
 -3.48682956e-01 -3.38006225e-01 -3.00018433e-01 -2.60018681e-01
 -3.00773606e-01 -2.34730496e-01 -2.34295140e-01 -1.72139171e-01
 -1.59067649e-01 -1.12764958e-01 -9.48041991e-02 -7.18606947e-02
 -4.54163705e-02 -3.40930155e-02 -2.63911693e-02 -1.63648393e-02
 -1.13566925e-02 -6.53702981e-03 -3.99135083e-03 -2.20438035e-03
 -1.34401137e-03 -2.30586587e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
7: 0:03:36.738129 (2689.490279116485, 1398.8510576717815, 108.21183622707825), [-3.54379193e-03  1.49734201e-03 -3.49419066e-01 -1.47082664e+00
 -1.04708911e+00 -1.00476814e+00 -1.50668579e+00 -1.00947050e+00
 -2.20960257e-01  3.25553432e-02  7.65545274e-02  1.98688220e-01
  3.72042048e-01  3.48949326e-01  1.52443439e-01  2.89072299e-01
  4.64078029e-01  4.67508370e-01  6.89132494e-01  8.31408047e-01
  1.07268153e+00  1.02019461e+00  9.97748501e-01  1.05557931e+00
  9.93608965e-01  9.16183442e-01  6.70635966e-01  5.15280283e-01
  4.11475560e-01  2.08341544e-01  1.48421348e-01  3.32995836e-02
 -5.06933741e-02 -1.82276806e-01 -2.14130506e-01 -3.18112753e-01
 -3.26904897e-01 -3.65915155e-01 -3.34838856e-01 -4.47209279e-01
 -3.74153144e-01 -3.69606677e-01 -3.32666743e-01 -3.02686468e-01
 -3.42367365e-01 -2.69901554e-01 -2.72927570e-01 -2.02789848e-01
 -1.89464861e-01 -1.35539776e-01 -1.18915426e-01 -8.82486915e-02
 -5.66895203e-02 -4.30713273e-02 -3.32567625e-02 -2.08228928e-02
 -1.42228343e-02 -8.19755119e-03 -5.06944049e-03 -2.81959079e-03
 -1.64934860e-03 -2.88144180e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
8: 0:04:12.800661 (2687.103593537237, 1398.4684499762125, 109.833306415188), [-5.02187421e-03  7.43295482e-04 -3.63887872e-01 -1.55778602e+00
 -9.79796267e-01 -1.06776283e+00 -1.47419707e+00 -1.02934293e+00
 -2.41200346e-01  5.24178819e-02  7.63662028e-02  1.79065452e-01
  3.56914774e-01  3.51000146e-01  1.75611982e-01  3.21417830e-01
  5.02162267e-01  4.82122743e-01  6.81178735e-01  8.15006568e-01
  1.03801472e+00  1.02857794e+00  9.65886460e-01  1.03320566e+00
  9.88075777e-01  9.27595982e-01  6.89230399e-01  5.44288449e-01
  4.48825337e-01  2.52470118e-01  1.88468955e-01  7.75169525e-02
 -1.37956028e-02 -1.44700746e-01 -1.87064891e-01 -2.94301463e-01
 -3.28282705e-01 -3.56419912e-01 -3.29382151e-01 -4.52448475e-01
 -3.82089823e-01 -3.82963974e-01 -3.47736465e-01 -3.34427459e-01
 -3.65582764e-01 -2.90323601e-01 -2.96304843e-01 -2.21989657e-01
 -2.08526924e-01 -1.50052629e-01 -1.38037004e-01 -9.90766772e-02
 -6.40028510e-02 -4.88689269e-02 -3.78166314e-02 -2.37726775e-02
 -1.61709853e-02 -9.31393403e-03 -5.96760458e-03 -3.21791924e-03
 -1.84827541e-03 -3.19042551e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
9: 0:04:31.163231 (2685.166208732459, 1398.0208849154417, 110.87556109842423), [-7.00908661e-03 -1.22338369e-03 -3.65412227e-01 -1.54830741e+00
 -1.03856873e+00 -1.07433837e+00 -1.46543233e+00 -1.05785111e+00
 -2.75653931e-01  8.26977324e-02  1.04648727e-01  1.69847631e-01
  3.25899011e-01  3.23121849e-01  1.85683584e-01  3.52317895e-01
  5.64844856e-01  5.36236032e-01  7.27346348e-01  8.41521411e-01
  1.03737660e+00  1.05692812e+00  9.33040442e-01  9.94753544e-01
  9.54595832e-01  9.02302506e-01  6.69973107e-01  5.37917616e-01
  4.45897815e-01  2.82538135e-01  2.01721286e-01  9.59313885e-02
  6.41477024e-03 -1.20200691e-01 -1.66207919e-01 -2.72595460e-01
 -3.31053391e-01 -3.41906547e-01 -3.16462645e-01 -4.47396313e-01
 -3.79843310e-01 -3.85813674e-01 -3.52544679e-01 -3.66778732e-01
 -3.78730916e-01 -3.02777667e-01 -3.11557619e-01 -2.35350726e-01
 -2.21690741e-01 -1.60301962e-01 -1.58092266e-01 -1.07132484e-01
 -6.92419456e-02 -5.29547664e-02 -4.11822453e-02 -2.59275044e-02
 -1.76682159e-02 -1.01319740e-02 -6.94310010e-03 -3.48135558e-03
 -1.98167931e-03 -3.31879181e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
10: 0:04:49.534304 (2683.2751129734297, 1397.3833407056845, 111.49156843793915), [-8.53482611e-03 -2.45294617e-03 -3.65224618e-01 -1.53614170e+00
 -1.03517615e+00 -1.07099547e+00 -1.51131409e+00 -9.95274960e-01
 -3.04678675e-01  2.50133432e-02  1.23318358e-01  2.12087131e-01
  3.56396096e-01  3.16842503e-01  1.69717746e-01  3.22110697e-01
  5.41224323e-01  5.30856851e-01  7.34756210e-01  8.58323963e-01
  1.05314208e+00  1.09887238e+00  9.35611805e-01  9.93452251e-01
  9.51116239e-01  8.97647486e-01  6.61950535e-01  5.32278425e-01
  4.37204130e-01  3.05123880e-01  1.99891453e-01  9.47578730e-02
  8.50788168e-03 -1.15922392e-01 -1.60882820e-01 -2.65752091e-01
 -3.37852652e-01 -3.35182373e-01 -3.08650225e-01 -4.42787279e-01
 -3.75824956e-01 -3.84036518e-01 -3.51496830e-01 -3.92442420e-01
 -3.82010825e-01 -3.06316895e-01 -3.16445196e-01 -2.40097059e-01
 -2.26169287e-01 -1.63884936e-01 -1.73371185e-01 -1.10178460e-01
 -7.10255909e-02 -5.42640970e-02 -4.23799022e-02 -2.66778587e-02
 -1.82471490e-02 -1.04141030e-02 -7.69530465e-03 -3.54715746e-03
 -2.01821577e-03 -3.28352655e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
11: 0:05:25.463959 (2682.9062921455093, 1397.0468720694705, 111.18745199343176), [-6.14640504e-03 -8.09223363e-04 -3.62250388e-01 -1.52489327e+00
 -1.02351552e+00 -1.09234565e+00 -1.45510200e+00 -1.07996164e+00
 -2.41794958e-01  2.81650910e-02  6.64018399e-02  1.95710588e-01
  3.88250054e-01  3.79181141e-01  1.92091959e-01  3.33763346e-01
  5.18612085e-01  5.05175281e-01  7.14413480e-01  8.45862968e-01
  1.06541361e+00  1.07705564e+00  9.71464124e-01  1.02892016e+00
  9.74795054e-01  9.06418954e-01  6.61989310e-01  5.16486239e-01
  4.12527879e-01  2.64925556e-01  1.62656279e-01  5.04536832e-02
 -3.16626922e-02 -1.59696574e-01 -1.94473079e-01 -2.97819571e-01
 -3.39053024e-01 -3.52411600e-01 -3.21426285e-01 -4.43507724e-01
 -3.72516742e-01 -3.73598298e-01 -3.38379131e-01 -3.61607414e-01
 -3.57935597e-01 -2.84557720e-01 -2.90730005e-01 -2.18374591e-01
 -2.04496214e-01 -1.47211351e-01 -1.53754854e-01 -9.74076935e-02
 -6.24011510e-02 -4.74106616e-02 -3.69277217e-02 -2.31593006e-02
 -1.58868125e-02 -9.06920133e-03 -6.75497877e-03 -3.05777577e-03
 -1.78584973e-03 -2.83057057e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
12: 0:06:01.549349 (2682.7922978801107, 1396.9861875264437, 111.18007717277683), [-3.98438925e-03  8.19605448e-04 -3.62676161e-01 -1.52437168e+00
 -1.02896328e+00 -1.09328351e+00 -1.47611496e+00 -1.04668366e+00
 -2.92844278e-01  4.65904847e-02  7.64175653e-02  1.82779163e-01
  3.67302784e-01  3.73906223e-01  1.94380656e-01  3.47619285e-01
  5.28909868e-01  5.05419977e-01  7.07479628e-01  8.31666608e-01
  1.05804313e+00  1.02917257e+00  9.79886323e-01  1.04141606e+00
  9.87289238e-01  9.17525342e-01  6.75409691e-01  5.24461553e-01
  4.23606648e-01  2.32618289e-01  1.62202084e-01  4.84976395e-02
 -3.77843868e-02 -1.68882771e-01 -2.04288189e-01 -3.09337423e-01
 -3.30144875e-01 -3.62366819e-01 -3.32525780e-01 -4.49003680e-01
 -3.76968281e-01 -3.74560480e-01 -3.38136363e-01 -3.25249036e-01
 -3.51024329e-01 -2.77625664e-01 -2.81694948e-01 -2.09917602e-01
 -1.96517621e-01 -1.40918191e-01 -1.32010005e-01 -9.21948087e-02
 -5.92707842e-02 -4.50940353e-02 -3.48420519e-02 -2.18929615e-02
 -1.48879536e-02 -8.56364756e-03 -5.67726505e-03 -2.92139335e-03
 -1.70581989e-03 -2.83480762e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
13: 0:06:19.931050 (2683.071079544007, 1396.9455957499117, 110.82011195581657), [-3.95154275e-03  8.07355102e-04 -3.63654280e-01 -1.51990600e+00
 -1.03337225e+00 -1.09669726e+00 -1.49044849e+00 -1.04851271e+00
 -2.74136356e-01 -1.94804190e-02  9.84551705e-02  2.15364672e-01
  3.77718369e-01  3.46162836e-01  1.75401756e-01  3.24466808e-01
  5.24917579e-01  5.14642162e-01  7.26722217e-01  8.49787432e-01
  1.06797671e+00  1.00636007e+00  9.68777456e-01  1.02405525e+00
  9.70051509e-01  9.04372265e-01  6.70072452e-01  5.27786405e-01
  4.34823553e-01  2.17354370e-01  1.79809126e-01  7.05266418e-02
 -1.90560004e-02 -1.48772581e-01 -1.89949200e-01 -2.96369110e-01
 -3.17797391e-01 -3.56552070e-01 -3.29996077e-01 -4.49273567e-01
 -3.79299416e-01 -3.78789521e-01 -3.43316874e-01 -3.01312682e-01
 -3.58266988e-01 -2.84057786e-01 -2.88964788e-01 -2.15713218e-01
 -2.02673264e-01 -1.45635111e-01 -1.18609559e-01 -9.56403400e-02
 -6.18404421e-02 -4.72669770e-02 -3.64279358e-02 -2.29766587e-02
 -1.55121186e-02 -8.93907637e-03 -4.99614934e-03 -3.07430538e-03
 -1.78211738e-03 -3.06509413e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
14: 0:06:38.300298 (2683.4813612262437, 1396.924356185277, 110.36735114431049), [-6.64668475e-03 -1.38327564e-03 -3.61921703e-01 -1.50486897e+00
 -1.02616538e+00 -1.08747458e+00 -1.49897842e+00 -1.01724798e+00
 -3.02106771e-01  1.04908380e-02  7.76391645e-02  2.13665931e-01
  3.94734035e-01  3.65357081e-01  1.79689168e-01  3.17031148e-01
  5.09135627e-01  5.04952373e-01  7.19960407e-01  8.56163444e-01
  1.07230615e+00  1.06839215e+00  9.65232501e-01  1.01760558e+00
  9.62088730e-01  8.94888781e-01  6.53403210e-01  5.14059262e-01
  4.13537829e-01  2.53287452e-01  1.71056178e-01  6.21777058e-02
 -2.01826786e-02 -1.46054197e-01 -1.83439851e-01 -2.86521428e-01
 -3.28964737e-01 -3.45013392e-01 -3.15690750e-01 -4.40120797e-01
 -3.70874819e-01 -3.73977663e-01 -3.39799991e-01 -3.43125271e-01
 -3.62105635e-01 -2.88652519e-01 -2.95795601e-01 -2.22737004e-01
 -2.09022449e-01 -1.50783239e-01 -1.43509228e-01 -1.00192471e-01
 -6.43304860e-02 -4.89911442e-02 -3.81305061e-02 -2.39828097e-02
 -1.63907359e-02 -9.35186129e-03 -6.23123960e-03 -3.15648474e-03
 -1.82852319e-03 -2.91310537e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
15: 0:07:14.378537 (2683.478920732569, 1396.9193048840445, 110.35968903552033), [-6.41063720e-03 -1.19308360e-03 -3.60866554e-01 -1.50343748e+00
 -1.02455621e+00 -1.08583578e+00 -1.49696520e+00 -1.01718987e+00
 -2.96580221e-01  2.54392527e-03  9.29425037e-02  2.14012154e-01
  3.86936099e-01  3.62261124e-01  1.82572559e-01  3.24767365e-01
  5.17013767e-01  5.07410777e-01  7.17128952e-01  8.47360671e-01
  1.06326795e+00  1.07235080e+00  9.64595256e-01  1.02072793e+00
  9.67228377e-01  9.00195942e-01  6.57909303e-01  5.15281588e-01
  4.13152367e-01  2.61602734e-01  1.66422396e-01  5.59032649e-02
 -2.62263057e-02 -1.52912919e-01 -1.88817313e-01 -2.91651207e-01
 -3.33936459e-01 -3.47755422e-01 -3.17616545e-01 -4.40329563e-01
 -3.70360908e-01 -3.72412324e-01 -3.37776593e-01 -3.54393015e-01
 -3.58601952e-01 -2.85467186e-01 -2.92106248e-01 -2.19666993e-01
 -2.05937924e-01 -1.48402615e-01 -1.50007976e-01 -9.84012225e-02
 -6.31151928e-02 -4.80028891e-02 -3.73717640e-02 -2.34839710e-02
 -1.60738502e-02 -9.17839188e-03 -6.56621126e-03 -3.09633699e-03
 -1.79218162e-03 -2.92431160e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
16: 0:07:32.732176 (2683.3018922900706, 1396.91390543664, 110.52591858320976), [-5.24201138e-03 -2.71238245e-04 -3.60565370e-01 -1.50801458e+00
 -1.02608394e+00 -1.08783402e+00 -1.49368165e+00 -1.02398833e+00
 -2.94334982e-01  8.43190536e-03  8.61304741e-02  2.13524144e-01
  3.86644052e-01  3.60438776e-01  1.82117239e-01  3.24909882e-01
  5.18853220e-01  5.10448437e-01  7.21721710e-01  8.46420924e-01
  1.06310163e+00  1.05408946e+00  9.65501110e-01  1.02235039e+00
  9.69084722e-01  9.02506363e-01  6.63421251e-01  5.19225090e-01
  4.20089834e-01  2.56564196e-01  1.68086899e-01  5.74202226e-02
 -2.73573097e-02 -1.55415284e-01 -1.92445261e-01 -2.96323460e-01
 -3.33522578e-01 -3.52563235e-01 -3.23373527e-01 -4.43381672e-01
 -3.73097843e-01 -3.73427468e-01 -3.38165220e-01 -3.50479344e-01
 -3.55620363e-01 -2.82352354e-01 -2.87926753e-01 -2.15681383e-01
 -2.02248092e-01 -1.45501497e-01 -1.47697637e-01 -9.59490522e-02
 -6.17209701e-02 -4.69913705e-02 -3.64521005e-02 -2.29334930e-02
 -1.56280323e-02 -8.93951249e-03 -6.45983956e-03 -3.05650860e-03
 -1.77889922e-03 -2.93329988e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
17: 0:08:08.809579 (2683.268915747251, 1396.913089798312, 110.55726384937296), [-5.54281712e-03 -4.81422390e-04 -3.61451872e-01 -1.50933859e+00
 -1.02676752e+00 -1.08862099e+00 -1.49326744e+00 -1.02586795e+00
 -2.93591550e-01  7.16169673e-03  9.00976010e-02  2.09006579e-01
  3.83382241e-01  3.62495582e-01  1.83369806e-01  3.27549710e-01
  5.19009781e-01  5.07846131e-01  7.17597055e-01  8.46336589e-01
  1.06459016e+00  1.05472094e+00  9.67996539e-01  1.02429673e+00
  9.70130093e-01  9.02615161e-01  6.61936764e-01  5.18184303e-01
  4.18077455e-01  2.51759784e-01  1.67967383e-01  5.74430134e-02
 -2.65862573e-02 -1.54313632e-01 -1.91135328e-01 -2.94870433e-01
 -3.31465755e-01 -3.51360217e-01 -3.22028014e-01 -4.43040443e-01
 -3.72863478e-01 -3.73752509e-01 -3.38712223e-01 -3.44518639e-01
 -3.57169599e-01 -2.83823770e-01 -2.89730366e-01 -2.17270421e-01
 -2.03742063e-01 -1.46642600e-01 -1.44151926e-01 -9.68593521e-02
 -6.22555854e-02 -4.73950470e-02 -3.67952617e-02 -2.31394261e-02
 -1.57815712e-02 -9.03389861e-03 -6.27294109e-03 -3.06582390e-03
 -1.77903962e-03 -2.93338958e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
18: 0:08:44.884093 (2683.2679726275405, 1396.9130648640958, 110.55815710065116), [-5.63938441e-03 -5.46789799e-04 -3.61523300e-01 -1.50931709e+00
 -1.02671913e+00 -1.08858524e+00 -1.49314528e+00 -1.02594713e+00
 -2.93447256e-01  7.37617337e-03  8.94734586e-02  2.09823299e-01
  3.83558077e-01  3.61941270e-01  1.83181553e-01  3.27616995e-01
  5.19549366e-01  5.08271489e-01  7.17644724e-01  8.45930323e-01
  1.06373919e+00  1.05567880e+00  9.67579306e-01  1.02422553e+00
  9.70442240e-01  9.03160944e-01  6.62232497e-01  5.18445750e-01
  4.18032341e-01  2.51238303e-01  1.67870257e-01  5.71403402e-02
 -2.67838206e-02 -1.54572085e-01 -1.91252121e-01 -2.94965140e-01
 -3.31233340e-01 -3.51290445e-01 -3.21803014e-01 -4.42996528e-01
 -3.72751651e-01 -3.73710684e-01 -3.38684076e-01 -3.43281202e-01
 -3.57356622e-01 -2.84016631e-01 -2.89987017e-01 -2.17523306e-01
 -2.03956892e-01 -1.46804009e-01 -1.43357887e-01 -9.70001507e-02
 -6.23168722e-02 -4.74361489e-02 -3.68308916e-02 -2.31555797e-02
 -1.57948540e-02 -9.03937175e-03 -6.23142978e-03 -3.06041553e-03
 -1.77194044e-03 -2.93204602e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
19: 0:09:20.973437 (2683.2664007426797, 1396.9130593161706, 110.55971788966161), [-5.60458430e-03 -5.45316758e-04 -3.61475748e-01 -1.50936596e+00
 -1.02671922e+00 -1.08859777e+00 -1.49306131e+00 -1.02605942e+00
 -2.93341957e-01  7.37676488e-03  8.96447794e-02  2.09537160e-01
  3.83584194e-01  3.62126661e-01  1.83251443e-01  3.27480945e-01
  5.19346503e-01  5.08399625e-01  7.18017826e-01  8.45969189e-01
  1.06372222e+00  1.05564499e+00  9.67347564e-01  1.02401202e+00
  9.70293489e-01  9.03135281e-01  6.62491125e-01  5.18695807e-01
  4.18431083e-01  2.51189606e-01  1.68044460e-01  5.72599503e-02
 -2.68320442e-02 -1.54652849e-01 -1.91434166e-01 -2.95193768e-01
 -3.31230795e-01 -3.51522536e-01 -3.22037822e-01 -4.43150725e-01
 -3.72861667e-01 -3.73766457e-01 -3.38693198e-01 -3.42855576e-01
 -3.57232939e-01 -2.83884189e-01 -2.89808285e-01 -2.17370313e-01
 -2.03806004e-01 -1.46714084e-01 -1.43077521e-01 -9.69100850e-02
 -6.22687070e-02 -4.74118651e-02 -3.68014780e-02 -2.31519570e-02
 -1.57859802e-02 -9.04525730e-03 -6.21803037e-03 -3.07453606e-03
 -1.78929034e-03 -3.04904017e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
20: 0:09:39.332767 (2683.2629212308993, 1396.9130550977857, 110.56318896467224), [-5.54930566e-03 -4.97302613e-04 -3.61487239e-01 -1.50953753e+00
 -1.02681310e+00 -1.08871462e+00 -1.49302233e+00 -1.02633730e+00
 -2.93238682e-01  7.35598149e-03  8.93265432e-02  2.09841389e-01
  3.83481543e-01  3.61763898e-01  1.83154374e-01  3.27562763e-01
  5.19582566e-01  5.08384928e-01  7.17945070e-01  8.45903585e-01
  1.06385882e+00  1.05467925e+00  9.67604628e-01  1.02422673e+00
  9.70372900e-01  9.03107239e-01  6.62499963e-01  5.18651455e-01
  4.18553801e-01  2.51050132e-01  1.68047278e-01  5.73819963e-02
 -2.67328068e-02 -1.54594264e-01 -1.91388577e-01 -2.95208641e-01
 -3.31173267e-01 -3.51581659e-01 -3.22204338e-01 -4.43199819e-01
 -3.72942653e-01 -3.73787256e-01 -3.38720498e-01 -3.42920180e-01
 -3.57134255e-01 -2.83782427e-01 -2.89677618e-01 -2.17221272e-01
 -2.03690305e-01 -1.46587475e-01 -1.43115759e-01 -9.68217546e-02
 -6.22253002e-02 -4.73526366e-02 -3.67617473e-02 -2.31115283e-02
 -1.57645922e-02 -9.02145358e-03 -6.22494366e-03 -3.04796965e-03
 -1.77681209e-03 -2.85999997e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
21: 0:10:15.407597 (2683.2626890094825, 1396.9130548603425, 110.56342071120272), [-5.55493395e-03 -5.03744471e-04 -3.61485498e-01 -1.50951732e+00
 -1.02679542e+00 -1.08869728e+00 -1.49300682e+00 -1.02632072e+00
 -2.93226429e-01  7.36814488e-03  8.93676474e-02  2.09780271e-01
  3.83539443e-01  3.61811879e-01  1.83121862e-01  3.27533359e-01
  5.19570332e-01  5.08440009e-01  7.17992755e-01  8.45952969e-01
  1.06381773e+00  1.05459593e+00  9.67584616e-01  1.02421138e+00
  9.70429869e-01  9.03188324e-01  6.62520943e-01  5.18673816e-01
  4.18514394e-01  2.50988587e-01  1.68043873e-01  5.73541792e-02
 -2.67622824e-02 -1.54625595e-01 -1.91404654e-01 -2.95191767e-01
 -3.31172521e-01 -3.51563877e-01 -3.22150148e-01 -4.43175809e-01
 -3.72921869e-01 -3.73781180e-01 -3.38717432e-01 -3.42969667e-01
 -3.57177793e-01 -2.83817405e-01 -2.89728807e-01 -2.17267636e-01
 -2.03729094e-01 -1.46614219e-01 -1.43160497e-01 -9.68468878e-02
 -6.22340258e-02 -4.73714390e-02 -3.67736141e-02 -2.31179227e-02
 -1.57711616e-02 -9.02026556e-03 -6.22622862e-03 -3.05142743e-03
 -1.77182420e-03 -2.88088075e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
22: 0:10:51.480743 (2683.262856779593, 1396.9130547825687, 110.56325278554428), [-5.57490389e-03 -4.94976407e-04 -3.61521256e-01 -1.50951977e+00
 -1.02680418e+00 -1.08870425e+00 -1.49302260e+00 -1.02631916e+00
 -2.93246619e-01  7.35757661e-03  8.93679544e-02  2.09756637e-01
  3.83518047e-01  3.61823355e-01  1.83128828e-01  3.27508988e-01
  5.19532840e-01  5.08427997e-01  7.17987703e-01  8.45942716e-01
  1.06379666e+00  1.05464176e+00  9.67543337e-01  1.02419046e+00
  9.70395119e-01  9.03181044e-01  6.62506817e-01  5.18692771e-01
  4.18496769e-01  2.50964056e-01  1.68032333e-01  5.73151593e-02
 -2.67767329e-02 -1.54655131e-01 -1.91427595e-01 -2.95208017e-01
 -3.31180441e-01 -3.51568281e-01 -3.22156036e-01 -4.43187924e-01
 -3.72934987e-01 -3.73796022e-01 -3.38713549e-01 -3.42989093e-01
 -3.57180348e-01 -2.83843029e-01 -2.89747680e-01 -2.17297452e-01
 -2.03758477e-01 -1.46649516e-01 -1.43185278e-01 -9.68709100e-02
 -6.22359564e-02 -4.73821465e-02 -3.67864196e-02 -2.31386562e-02
 -1.57813988e-02 -9.03816597e-03 -6.22737153e-03 -3.07898832e-03
 -1.78600026e-03 -2.94397744e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
23: 0:11:09.859446 (2683.2632311997017, 1396.9130546945353, 110.56287818936889), [-5.57848877e-03 -4.98358096e-04 -3.61506941e-01 -1.50950541e+00
 -1.02679447e+00 -1.08869351e+00 -1.49302527e+00 -1.02629330e+00
 -2.93255984e-01  7.36461821e-03  8.93880304e-02  2.09741586e-01
  3.83526160e-01  3.61848387e-01  1.83135463e-01  3.27521384e-01
  5.19518851e-01  5.08419497e-01  7.17985158e-01  8.45941957e-01
  1.06378759e+00  1.05474953e+00  9.67527981e-01  1.02418359e+00
  9.70394078e-01  9.03164044e-01  6.62504121e-01  5.18680149e-01
  4.18493090e-01  2.50974909e-01  1.68037583e-01  5.73190021e-02
 -2.67772338e-02 -1.54641847e-01 -1.91423436e-01 -2.95207538e-01
 -3.31196947e-01 -3.51568152e-01 -3.22140470e-01 -4.43197268e-01
 -3.72918209e-01 -3.73793523e-01 -3.38723944e-01 -3.42975602e-01
 -3.57203329e-01 -2.83834753e-01 -2.89741659e-01 -2.17292637e-01
 -2.03751681e-01 -1.46636105e-01 -1.43175000e-01 -9.68493387e-02
 -6.22557763e-02 -4.73887030e-02 -3.67816871e-02 -2.31295487e-02
 -1.57764530e-02 -9.02850561e-03 -6.22894798e-03 -3.06683131e-03
 -1.77925312e-03 -2.92233277e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
24: 0:11:45.946585 (2683.263290662266, 1396.9130546870358, 110.56281871180526), [-5.57565822e-03 -5.18665583e-04 -3.61504144e-01 -1.50950517e+00
 -1.02679446e+00 -1.08869335e+00 -1.49302723e+00 -1.02629031e+00
 -2.93258677e-01  7.36429398e-03  8.93904988e-02  2.09738268e-01
  3.83526862e-01  3.61850919e-01  1.83138067e-01  3.27519546e-01
  5.19517132e-01  5.08420932e-01  7.17981430e-01  8.45939666e-01
  1.06379472e+00  1.05475985e+00  9.67532592e-01  1.02416468e+00
  9.70396892e-01  9.03171835e-01  6.62510930e-01  5.18668449e-01
  4.18484350e-01  2.50999810e-01  1.68037485e-01  5.73196597e-02
 -2.67860522e-02 -1.54633996e-01 -1.91417132e-01 -2.95212655e-01
 -3.31197290e-01 -3.51571341e-01 -3.22140031e-01 -4.43183266e-01
 -3.72921790e-01 -3.73787905e-01 -3.38725431e-01 -3.42964411e-01
 -3.57189646e-01 -2.83837412e-01 -2.89746941e-01 -2.17292650e-01
 -2.03749112e-01 -1.46642885e-01 -1.43167502e-01 -9.68581765e-02
 -6.22474100e-02 -4.73888107e-02 -3.67856357e-02 -2.31302710e-02
 -1.57754309e-02 -9.02936317e-03 -6.22654179e-03 -3.06469240e-03
 -1.78060935e-03 -2.96884095e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
25: 0:12:22.046040 (2683.263294362126, 1396.913054683528, 110.56281500492955), [-5.57266630e-03 -5.20495178e-04 -3.61502688e-01 -1.50950230e+00
 -1.02679208e+00 -1.08869063e+00 -1.49302563e+00 -1.02628634e+00
 -2.93257552e-01  7.36689823e-03  8.93938261e-02  2.09739388e-01
  3.83529807e-01  3.61853466e-01  1.83142399e-01  3.27521568e-01
  5.19519560e-01  5.08421131e-01  7.17982893e-01  8.45942037e-01
  1.06379944e+00  1.05476563e+00  9.67537315e-01  1.02416252e+00
  9.70396432e-01  9.03176055e-01  6.62514879e-01  5.18669915e-01
  4.18484200e-01  2.51010905e-01  1.68037128e-01  5.73204291e-02
 -2.67843217e-02 -1.54634700e-01 -1.91411912e-01 -2.95210610e-01
 -3.31193084e-01 -3.51567633e-01 -3.22141332e-01 -4.43173612e-01
 -3.72922900e-01 -3.73783878e-01 -3.38724224e-01 -3.42959786e-01
 -3.57178916e-01 -2.83839928e-01 -2.89746955e-01 -2.17293536e-01
 -2.03747403e-01 -1.46647952e-01 -1.43163262e-01 -9.68641112e-02
 -6.22398899e-02 -4.73851650e-02 -3.67859333e-02 -2.31326394e-02
 -1.57749892e-02 -9.03185086e-03 -6.22361005e-03 -3.06740442e-03
 -1.78210962e-03 -2.98034783e-04  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
Warning: Maximum number of iterations has been exceeded.
         Current function value: 1396.913055
         Iterations: 25
         Function evaluations: 3321
         Gradient evaluations: 41
[44]:
params.set_Fnl(boz.nl_lut(domain, res.x))
[45]:
print(params)
proposal:5746 darkrun:179 run:180 module:15 gain:2 ph/bin
drop intra darks:False
mean threshold:(47.979153846675516, 87.97915384667552) std threshold:(None, None)
mask:(#18) [[0, 345], [14, 412], [15, 437], [23, 503], [36, 477], [43, 506], [71, 451], [76, 302], [80, 223], [80, 224], [87, 355], [106, 332], [108, 185], [110, 390], [115, 169], [120, 339], [124, 350], [125, 296]]
rois threshold: 0.07
rois: {'n': {'xl': 27, 'xh': 98, 'yl': 58, 'yh': 94}, '0': {'xl': 98, 'xh': 169, 'yl': 58, 'yh': 94}, 'p': {'xl': 169, 'xh': 240, 'yl': 58, 'yh': 94}, 'sat': {'xl': 25, 'xh': 242, 'yl': 58, 'yh': 94}}
flat-field type: polyline
flat-field p: [-0.0017879505162705697, 0.03622762212160445, -0.2867526509210862, 1.1257258709638456, -2.208521140223112, 1.725633391505318, 0.39769767379472987, -0.01916915078309891, 0.16363021519261778, -0.5190354645772358, 0.7029863125117496, -0.2224976194626101, -0.33753991376726833, 1.2426150264784828] prod:(5.0, inf) ratio:(-inf, 1.2)
plane guess fit: None
use hexagons: False
enforce mirror symmetry: False
ff alpha: 0.1, max. iter.: 25
dFnl: [ 0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00 -5.57266630e-03 -5.57266630e-03 -5.57266630e-03
 -5.57266630e-03 -5.57266630e-03 -5.57266630e-03 -5.20495178e-04
 -5.20495178e-04 -5.20495178e-04 -5.20495178e-04 -5.20495178e-04
 -5.20495178e-04 -3.61502688e-01 -3.61502688e-01 -3.61502688e-01
 -3.61502688e-01 -3.61502688e-01 -3.61502688e-01 -1.50950230e+00
 -1.50950230e+00 -1.50950230e+00 -1.50950230e+00 -1.50950230e+00
 -1.50950230e+00 -1.02679208e+00 -1.02679208e+00 -1.02679208e+00
 -1.02679208e+00 -1.02679208e+00 -1.02679208e+00 -1.08869063e+00
 -1.08869063e+00 -1.08869063e+00 -1.08869063e+00 -1.08869063e+00
 -1.08869063e+00 -1.49302563e+00 -1.49302563e+00 -1.49302563e+00
 -1.49302563e+00 -1.49302563e+00 -1.49302563e+00 -1.02628634e+00
 -1.02628634e+00 -1.02628634e+00 -1.02628634e+00 -1.02628634e+00
 -2.93257552e-01 -2.93257552e-01 -2.93257552e-01 -2.93257552e-01
 -2.93257552e-01 -2.93257552e-01  7.36689823e-03  7.36689823e-03
  7.36689823e-03  7.36689823e-03  7.36689823e-03  7.36689823e-03
  8.93938261e-02  8.93938261e-02  8.93938261e-02  8.93938261e-02
  8.93938261e-02  8.93938261e-02  2.09739388e-01  2.09739388e-01
  2.09739388e-01  2.09739388e-01  2.09739388e-01  2.09739388e-01
  3.83529807e-01  3.83529807e-01  3.83529807e-01  3.83529807e-01
  3.83529807e-01  3.83529807e-01  3.61853466e-01  3.61853466e-01
  3.61853466e-01  3.61853466e-01  3.61853466e-01  3.61853466e-01
  1.83142399e-01  1.83142399e-01  1.83142399e-01  1.83142399e-01
  1.83142399e-01  3.27521568e-01  3.27521568e-01  3.27521568e-01
  3.27521568e-01  3.27521568e-01  3.27521568e-01  5.19519560e-01
  5.19519560e-01  5.19519560e-01  5.19519560e-01  5.19519560e-01
  5.19519560e-01  5.08421131e-01  5.08421131e-01  5.08421131e-01
  5.08421131e-01  5.08421131e-01  5.08421131e-01  7.17982893e-01
  7.17982893e-01  7.17982893e-01  7.17982893e-01  7.17982893e-01
  7.17982893e-01  8.45942037e-01  8.45942037e-01  8.45942037e-01
  8.45942037e-01  8.45942037e-01  8.45942037e-01  1.06379944e+00
  1.06379944e+00  1.06379944e+00  1.06379944e+00  1.06379944e+00
  1.06379944e+00  1.05476563e+00  1.05476563e+00  1.05476563e+00
  1.05476563e+00  1.05476563e+00  9.67537315e-01  9.67537315e-01
  9.67537315e-01  9.67537315e-01  9.67537315e-01  9.67537315e-01
  1.02416252e+00  1.02416252e+00  1.02416252e+00  1.02416252e+00
  1.02416252e+00  1.02416252e+00  9.70396432e-01  9.70396432e-01
  9.70396432e-01  9.70396432e-01  9.70396432e-01  9.70396432e-01
  9.03176055e-01  9.03176055e-01  9.03176055e-01  9.03176055e-01
  9.03176055e-01  9.03176055e-01  6.62514879e-01  6.62514879e-01
  6.62514879e-01  6.62514879e-01  6.62514879e-01  6.62514879e-01
  5.18669915e-01  5.18669915e-01  5.18669915e-01  5.18669915e-01
  5.18669915e-01  5.18669915e-01  4.18484200e-01  4.18484200e-01
  4.18484200e-01  4.18484200e-01  4.18484200e-01  4.18484200e-01
  2.51010905e-01  2.51010905e-01  2.51010905e-01  2.51010905e-01
  2.51010905e-01  1.68037128e-01  1.68037128e-01  1.68037128e-01
  1.68037128e-01  1.68037128e-01  1.68037128e-01  5.73204291e-02
  5.73204291e-02  5.73204291e-02  5.73204291e-02  5.73204291e-02
  5.73204291e-02 -2.67843217e-02 -2.67843217e-02 -2.67843217e-02
 -2.67843217e-02 -2.67843217e-02 -2.67843217e-02 -1.54634700e-01
 -1.54634700e-01 -1.54634700e-01 -1.54634700e-01 -1.54634700e-01
 -1.54634700e-01 -1.91411912e-01 -1.91411912e-01 -1.91411912e-01
 -1.91411912e-01 -1.91411912e-01 -1.91411912e-01 -2.95210610e-01
 -2.95210610e-01 -2.95210610e-01 -2.95210610e-01 -2.95210610e-01
 -2.95210610e-01 -3.31193084e-01 -3.31193084e-01 -3.31193084e-01
 -3.31193084e-01 -3.31193084e-01 -3.51567633e-01 -3.51567633e-01
 -3.51567633e-01 -3.51567633e-01 -3.51567633e-01 -3.51567633e-01
 -3.22141332e-01 -3.22141332e-01 -3.22141332e-01 -3.22141332e-01
 -3.22141332e-01 -3.22141332e-01 -4.43173612e-01 -4.43173612e-01
 -4.43173612e-01 -4.43173612e-01 -4.43173612e-01 -4.43173612e-01
 -3.72922900e-01 -3.72922900e-01 -3.72922900e-01 -3.72922900e-01
 -3.72922900e-01 -3.72922900e-01 -3.73783878e-01 -3.73783878e-01
 -3.73783878e-01 -3.73783878e-01 -3.73783878e-01 -3.73783878e-01
 -3.38724224e-01 -3.38724224e-01 -3.38724224e-01 -3.38724224e-01
 -3.38724224e-01 -3.38724224e-01 -3.42959786e-01 -3.42959786e-01
 -3.42959786e-01 -3.42959786e-01 -3.42959786e-01 -3.57178916e-01
 -3.57178916e-01 -3.57178916e-01 -3.57178916e-01 -3.57178916e-01
 -3.57178916e-01 -2.83839928e-01 -2.83839928e-01 -2.83839928e-01
 -2.83839928e-01 -2.83839928e-01 -2.83839928e-01 -2.89746955e-01
 -2.89746955e-01 -2.89746955e-01 -2.89746955e-01 -2.89746955e-01
 -2.89746955e-01 -2.17293536e-01 -2.17293536e-01 -2.17293536e-01
 -2.17293536e-01 -2.17293536e-01 -2.17293536e-01 -2.03747403e-01
 -2.03747403e-01 -2.03747403e-01 -2.03747403e-01 -2.03747403e-01
 -2.03747403e-01 -1.46647952e-01 -1.46647952e-01 -1.46647952e-01
 -1.46647952e-01 -1.46647952e-01 -1.46647952e-01 -1.43163262e-01
 -1.43163262e-01 -1.43163262e-01 -1.43163262e-01 -1.43163262e-01
 -9.68641112e-02 -9.68641112e-02 -9.68641112e-02 -9.68641112e-02
 -9.68641112e-02 -9.68641112e-02 -6.22398899e-02 -6.22398899e-02
 -6.22398899e-02 -6.22398899e-02 -6.22398899e-02 -6.22398899e-02
 -4.73851650e-02 -4.73851650e-02 -4.73851650e-02 -4.73851650e-02
 -4.73851650e-02 -4.73851650e-02 -3.67859333e-02 -3.67859333e-02
 -3.67859333e-02 -3.67859333e-02 -3.67859333e-02 -3.67859333e-02
 -2.31326394e-02 -2.31326394e-02 -2.31326394e-02 -2.31326394e-02
 -2.31326394e-02 -2.31326394e-02 -1.57749892e-02 -1.57749892e-02
 -1.57749892e-02 -1.57749892e-02 -1.57749892e-02 -1.57749892e-02
 -9.03185086e-03 -9.03185086e-03 -9.03185086e-03 -9.03185086e-03
 -9.03185086e-03 -9.03185086e-03 -6.22361005e-03 -6.22361005e-03
 -6.22361005e-03 -6.22361005e-03 -6.22361005e-03 -3.06740442e-03
 -3.06740442e-03 -3.06740442e-03 -3.06740442e-03 -3.06740442e-03
 -3.06740442e-03 -1.78210962e-03 -1.78210962e-03 -1.78210962e-03
 -1.78210962e-03 -1.78210962e-03 -1.78210962e-03 -2.98034783e-04
 -2.98034783e-04 -2.98034783e-04 -2.98034783e-04 -2.98034783e-04
 -2.98034783e-04  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00
  0.00000000e+00  0.00000000e+00  0.00000000e+00  0.00000000e+00]
nl alpha:0.5, sat. level:400,  nl max. iter.:25
[46]:
f = boz.inspect_correction_sk(params, ff, gain=params.gain)
f.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
mu: 0.53162150872741, s: 0.014231833871156006, snr: 37.3543925217438
weighted mu: 0.5284967114811245, s: 0.012979917063851683, snr: 40.716493709575175
diff mu: 0.53162150872741, s: 0.011395944875551761, snr: 46.65005969517471
mu: 0.9811092465797666, s: 0.00778191965332935, snr: 126.07547883895425
weighted mu: 0.9793382676687146, s: 0.00640518892225575, snr: 152.89763964117637
diff mu: 0.9811092465797666, s: 0.007376600692892246, snr: 133.00289488695228
mu: 0.981551672844284, s: 0.006482769558848448, snr: 151.40931108750374
weighted mu: 0.9816293507472074, s: 0.005180022484856727, snr: 189.5029130890651
diff mu: 0.981551672844284, s: 0.006211783906178405, snr: 158.01445891702812
[46]:
Text(0.5, 0.98, 'p:5746 r:180 d:179')
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_62_2.png
[47]:
f.savefig(path+prefix+'-inspect-correction.png', dpi=300)

plotting the fitted correction

[48]:
f = boz.inspect_Fnl(boz.ensure_on_host(params.get_Fnl()))
f.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
[48]:
Text(0.5, 0.98, 'p:5746 r:180 d:179')
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_65_1.png
[49]:
f.savefig(path+prefix+'-inspect-Fnl.png', dpi=300)

plotting the fit progresion

[50]:
f = boz.inspect_nl_fit(fit_res)
f.suptitle(f'p:{params.proposal} r:{params.run} d:{params.darkrun}')
[50]:
Text(0.5, 0.98, 'p:5746 r:180 d:179')
_images/OnlineGPU_BOZ_analysis_part_I.a_Correction_determination_S_K-egde_68_1.png
[51]:
f.savefig(path+prefix+'-inspect-nl-fit.png', dpi=300)

Save the analysis parameters

[52]:
params.save(path=path)
/gpfs/exfel/exp/SCS/202401/p005746/usr/processed_runs/r0180/parameters_p5746_d179_r180.json
[ ]: