toolbox_scs.detectors.fccd
¶
Module Contents¶
Classes¶
Functions¶
|
- class toolbox_scs.detectors.fccd.FastCCD(proposal, distance=1, raw=False)[source]¶
-
- open_run(run_nr, isDark=False, t0=0.0)[source]¶
Open a run with extra-data and prepare the virtual dataset for multiprocessing
- inputs:
run_nr: the run number isDark: True if the run is a dark run t0: optional t0 in mm
- define_scan(vname, bins)[source]¶
Prepare the binning of the FastCCD data.
- inputs:
- vname: variable name for the scan, can be a mnemonic string from ToolBox
or a dictionnary with [‘source’, ‘key’] fields
bins: step size (or bins_edge but not yet implemented)
- plot_xgm_hist(nbins=100)[source]¶
Plots an histogram of the SCS XGM dedicated SAS3 data.
- inputs:
nbins: number of the bins for the histogram.
- xgm_filter(xgm_low=-np.inf, xgm_high=np.inf)[source]¶
Filters the data by train. If one pulse within a train has an SASE3 SCS XGM value below xgm_low or above xgm_high, that train will be dropped from the dataset.
- inputs:
xgm_low: low threshold value xgm_high: high threshold value
- load_mask(fname, plot=True)[source]¶
Load a FastCCD mask file.
- input:
fname: string of the filename of the mask file plot: if True, the loaded mask is plotted
- binning()[source]¶
Bin the FastCCD data by the predifined scan type (FastCCD.define()) using multiprocessing
- save(save_folder=None, overwrite=False)[source]¶
Save the crunched data.
- inputs:
save_folder: string of the fodler where to save the data. overwrite: boolean whether or not to overwrite existing files.
- load_binned(runNB, dark_runNB=None, xgm_norm=True, save_folder=None)[source]¶
load previously binned (crunched) FastCCD data by FastCCD.crunch() and FastCCD.save()
- inputs:
runNB: run number to load dark_runNB: run number of the corresponding dark xgm_norm: normlize by XGM data if True save_folder: path string where the crunched data are saved
- plot_FastCCD(use_mask=True, p_low=1, p_high=98, vmin=None, vmax=None)[source]¶
Plot pumped and unpumped FastCCD images.
- inputs:
use_mask: if True, a mask is applied on the FastCCD. p_low: low percentile value to adjust the contrast scale on the unpumped and pumped image p_high: high percentile value to adjust the contrast scale on the unpumped and pumped image vmin: low value of the image scale vmax: high value of the image scale
- azimuthal_int(wl, center=None, angle_range=[0, 180 - 1e-06], dr=1, use_mask=True)[source]¶
Perform azimuthal integration of 1D binned FastCCD run.
- inputs:
wl: photon wavelength center: center of integration angle_range: angles of integration dr: dr use_mask: if True, use the loaded mask